Rectenna Solar Cells, Metal-Insulator Technology & Geometric Diodes
Optical Rectennas
Metal-Insulator Technology, Geometric Diodes, Effeciency Limits, Qunatum Theroy of Operation, Traveling Wave Decices, and More
Metal-insulator-metal diodes for optical rectennas
“” Amina Belkadi, Ayendra Weerakkody, & Garret Moddel, Nature Communications, (2021) 12:2925 doi.org/10.1038/s41467-021-23182-0
“Nonstoichiometric Nanolayered Ni/NiO/Al2O3/CrAu Metal−Insulator−Metal Infrared Rectenna,” Ayendra Weerakkody, Amina Belkadi, and Garret Moddel, ACS Appl. Nano. Mater., (2021). DOI: 10.1021/acsanm.0c03012
“Large Errors from Assuming Equivalent DC and High-Frequency Electrical Characteristics in Metal−Multiple-Insulator−Metal Diodes,” Amina Belkadi, Ayendra Weerakkody, and Garret Moddel, ACS Photonics, 5 (12), 4776–4780 (2018). DOI: 10.1021/acsphotonics.8b01399
“Responsivity–Resistance Relationship in MIIM Diodes,” S. Brad Herner, Amina Belkadi, Ayendra Weerakkody, Bradley Pelz, and Garret Moddel, IEEE J. Photovoltaics, 8 (2) (2018). DOI: 10.1109/JPHOTOV.2018.2791421.
“Avoiding Erroneous Analysis of MIM Diode Current-Voltage Characteristics: Exponential Fitting,” B. Pelz, A. Belkadi, G. Moddel, Measurement, 120, 28-33 (2018).
“High performance MIIM diode based on cobalt oxide/titanium oxide,” S. B. Herner, A. D. Weerakkody, A. Belkadi,2and G. Moddel, Appl Phys. Lett., 110, 223901 (2017).
“Metal Single-Insulator and Multi-Insulator Diodes for Rectenna Solar Cells”, S. Grover, and G. Moddel, Ch. 5 in Rectenna Solar Cells, G. Moddel and S. Grover, editors, (Springer, New York, 2013).
"Engineering the current–voltage characteristics of metal–insulator–metal diodes using double-insulator tunnel barriers," S. Grover and G. Moddel, Solid State Electron., 67, 94-99 (2012). See below for free access to the metal-insulator diode current voltage simulator.
"Applicability of Metal/Insulator/Metal (MIM) Diodes to Solar Rectennas," S. Grover and G. Moddel, IEEE Journal of Photovoltaics, 1, 78-83 (2011).
Geometric diodes
“,” John Stearns, and Garret Moddel, Nanomaterials , 11, 2361 (2021), doi.org/10.3390/nano11092361
“," Heng Wang, Gaurav Jayaswal, Geetanjali Deokar, John Stearns, Pedro MFJ Costa, Garret Moddel, and Atif Shamim, Nanomaterials 11, 1986 (2021).
"High Frequency Characteristics of Graphene Geometric Diodes," J. Stearns and G. Moddel, 2020 Device Research Conference (DRC), Columbus, OH, USA, 2020, pp. 1-2, doi: 10.1109/DRC50226.2020.9135150. Poster
“” J. Stearns and G. Moddel, Proc. SPIE 11089, Nanoengineering: Fabrication, Properties, Optics, Thin Films, and Devices XVI, 1108903 (3 September 2019); doi.org/10.1117/12.2527701.
"," Zixu Zhu, Saumil Joshi, Bradley Pelz and Garret Moddel, Ch. 33, in Graphene Science Handbook: Electrical and Optical Properties, M. Aliofkhazraei, N. Ali, W. I. Milne, C. S. Ozkan, S. Mitura, and J. L. Gervasoni, editors, pp. 543–552 (CRC Press, Boca Raton, FL, 2016) DOI: 10.1201/b19642-37.
- “High Performance Room Temperature Rectenna IR Detectors Using Graphene Geometric Diodes,” Z. Zhu, S. Joshi, and G. Moddel, IEEE J. Selected Topics in Quantum Electronics, 20, 3801409 (2014), DOI 10.1109/JSTQE.2014.2318276.
- “Geometric Diodes for Optical Rectennas”, Z. Zhu, S. Joshi, S. Grover, and G. Moddel, Ch. 10 in Rectenna Solar Cells, G. Moddel and S. Grover, editors, (Springer, New York, 2013).
“Graphene Geometric Diodes for Terahertz Rectennas,” Z. Zhu, S. Joshi, S. Grover, and G Moddel, J. Phys. D: Appl. Phys. 46, 185101 (2013).
“Ultrahigh Speed Graphene Diode with Reversible Polarity,” G. Moddel, Z. Zhu, S. Grover, and S. Joshi, Solid State Commun., 152, 1842-1845 (2012).
“Infrared response of geometric diode rectenna solar cells,” S. Joshi, Z. Zhu, S. Grover, and G. Moddel, IEEE Photovoltaic Specialists Conference, Austin, TX, June 3-8, 2012.
Brief introduction to rectenna solar cells and geometric diodes: “Solar power conversion using diodes coupled to antennas,” Garret Moddel, Zixu Zhu and Sachit Grover, 6 September 2011, SPIE Newsroom.
“Optical Rectenna Solar Cells Using Graphene Geometric Diodes,” Z. Zhu, S. Grover, K. Krueger, G. Moddel, IEEE Photovoltaic Specialists Conference, Seattle, WA, June 19-24, 2011, pp. 002120- 002122.
“Nanoscale geometric diodes for improved rectenna solar cells,” Z. Zhu, S. Grover, K. Krueger and G. Moddel, 5th (OSA) International Conference on Nanophotonics, FudanUniversity, Shanghai, China 22-26 May, 2011
"," Garret Moddel, U.S. Patent No. 8,803,340, issued 2014 (provisional submitted July 18, 2008).
Theory of operation and efficiency limits of optical rectennas
Thermoradiative power for night-time energy harvesting and other applications
“Radiating power converter and methods,” Garret Moddel, US Patent No. 9,581,142, issued 2017.
“,” blog, Garret Moddel and Saumil Joshi, JPhys+, July 21 (2016).
“Optical rectenna operation: where Maxwell meets Einstein,” Saumil Joshi and Garret Moddel, J. Phys. D: Appl. Phys. 49, 265602 (8pp) (2016).
“Simple Figure of Merit for Diodes in Optical Rectennas,” Saumil Joshi, and Garret Moddel, IEEE Journal of Photovoltaics, 6, 668-672 (2016).
“” Garret Moddel, and Saumil Joshi, US Patent No. 9,255,840, issued 2016.
“Optical rectennas: Nanotubes circumvent trade-offs,” Garret Moddel, Nature Nanotechnology, 20, 1009-1010 (2015 ).
Also available through the
“Rectennas at optical frequencies: How to analyze the response,” Saumil Joshi, and Garret Moddel, J. Appl. Phys., 118, 084503 1-6 (2015).
Book: Rectenna Solar Cells, Garret Moddel and Sachit Grover, editors, (Springer, New York, 2013).
- “Will Rectenna Solar Cells Be Practical?”, G. Moddel, Ch. 1 in Rectenna Solar Cells, G. Moddel and S. Grover, editors, (Springer, New York, 2013).
“Optical Frequency Rectification”, S. Grover, and G. Moddel, Ch. 2 in Rectenna Solar Cells, G. Moddel and S. Grover, editors, (Springer, New York, 2013).
“Efficiency Limits for Solar Spectrum Rectification”, S. Joshi, S. Grover, and G. Moddel, Ch. 3 in Rectenna Solar Cells, G. Moddel and S. Grover, editors, (Springer, New York, 2013).
“Efficiency limits of rectenna solar cells: Theory of broadband photon-assisted tunneling," S. Joshi and G. Moddel, Applied Physics Letters, 102, 083901 (2013).
“Quantum theory of operation for rectenna solar cells,” S. Grover, S. Joshi and G. Moddel, J. Phys. D: Appl. Phys. 46, 135106 (2013).
Traveling-wave optical rectennas
- "Effects of transmission line geometry on traveling-wave metal-insulator-metal rectenna infrared detectors." B. Pelz,, M. Armanious, and G. Moddel, J. Appl Phys. 126.6 (2019): 064503; . Supplement
- “Demonstration of distributed capacitance compensation in a metal-insulator-metal infrared rectenna incorporating a traveling-wave diode,” B. Pelz and G. Moddel, J. Appl Phys. 125234502 (2019); . Supplement
- “Traveling-Wave Metal-Insulator-Metal Diodes for Infrared Rectennas,” B. Pelz, A. Belkadi and G. Moddel, 43rd IEEE Photovoltaic Specialists Conference, Portland, OR, June 5-10, 2016, 1034-1038.
“Traveling-Wave Metal/Insulator/Metal Diodes for Improved Infrared Bandwidth and Efficiency of Antenna-Coupled Rectifiers,” S. Grover, O. Dmitriyeva, M. J. Estes, and G. Moddel, IEEE Trans. Nanotechnology, 99, 716-722 (2010).
“,” Michael J. Estes and Garret Moddel, U.S. Patent No. 7,177,515 (2007).
Broad studies and reviews of optical rectennas
“Quantum Rectennas for Photovoltaics,” Feng Yu, Garret Moddel and Richard Corkish, Ch. 16 in Advanced Concepts in Photovoltaics, A. J. Nozik, G. Conibeer, and M. C Beard, editors, pp. 506-546, (Royal Society of Chemistry, Cambridge, UK, 2014) DOI:10.1039/9781849739955-00506.
“Will Rectenna Solar Cells Be Practical?”, G. Moddel, Ch. 1 in Rectenna Solar Cells, G. Moddel and S. Grover, editors, (Springer, New York, 2013).
“Overview of optical rectennas for solar energy harvesting,” invited paper, Zixu Zhu, Saumil Joshi, Bradley Pelz and Garret Moddel, Next Generation (Nano) Photonic and Cell Technologies for Solar Energy Conversion IV, edited by Oleg V. Sulima, Gavin Conibeer, Proc. of SPIE Vol. 8824, 88240O-1 - 88240O-11, 2013.
- “Interconnected High Speed Electron Tunneling Devices,” Michael J. Estes and Garret Moddel, U.S. Patent No. 7,126,151 (2006).
“Terahertz Interconnect System and Applications,” Michael J. Estes and Garret Moddel, U.S. Patent No. 6,967,347 (2005).
"Macroelectronics: Perspectives on Technology and Applications, " R. Reuss, with G. Moddel, et al., Proc. IEEE 93 (7), 1239-1256 (2005).
"Detectors at the Intersection of Photons and Electromagnetic Fields or, Where Einstein Meets Maxwell," invited paper, B. Eliasson and G. Moddel, Spring Meeting of the Materials Research Society, San Francisco, March 28-April 1, 2005.
"Terahertz device integrated antenna for use in resonant and non-resonant modes and method," "Manoja D. Weiss, Blake J. Eliasson and Garret Moddel, U.S. Patent No. 6,835,949 (2004).
“High speed electron tunneling device and applications,” G. Moddel, and B. J. Eliasson, U.S. Patent No. 6,756,649, issued 2004.
Rectenna solar cells: “Metal-oxide electron tunneling device for solar energy conversion,” B. J. Eliasson, and G. Moddel, U.S. Patent No. 6,534,784, issued 2003.
- “A New Technology for Terahertz Electronics: Thin-Film Devices Based on Metal-Insulator Tunnel Junctions,” Phiar Corporation whitepaper, 2003.
Student PhD Theses on Rectennas and MIM Diodes
- Metal-Insulator-Metal Diodes for Ambient Heat Harvesting with Rectennas, Amina Belkadi Dostart, PhD Thesis, University of Colorado, 2020.
- Traveling-Wave Metal-Insulator-Metal Diodes for Infrared Rectennas, Bradley Pelz, PhD Thesis, University of Colorado, 2018.
- Performance Limits of Optical Rectennas, Saumil Joshi, PhD Thesis, University of Colorado, 2015.
- Graphene Geometric Diodes for Optical Rectennas, Zixu Zhu, PhD Thesis, University of Colorado, 2014.
- Diodes for Optical Rectennas, Sachit Grover, PhD Thesis, University of Colorado, 2011.
- Rectenna solar cells: Metal-Insulator Diodes for Solar Energy Conversion, Blake J. Eliasson, PhD Thesis, University of Colorado, 2001.
Metal-insulator diode simulator
- to our state-of-the art MATLAB-based simulator for MIM and MIIM diodes developed by Sachit Grover.