Daniel Slichter Portrait
Lecturer • NIST
Physics

ڴھ:81-1A205, NIST, 325 Broadway

Research Interests

My research interests lie in experimental quantum information processing with trapped atomic ions, with an emphasis on developing new paradigms for scalable trapped ion quantum computing. Recent projects include performing high-fidelity two-ion entangling operations with microwave and rf fields instead of lasers, achieving entangled state fidelities rivaling those from best laser-based gates; using strong unitary squeezing of ion motion to enhance ion-ion interactions and to perform electric field sensing below the standard quantum limit; and integrating superconducting photon detectors into microfabricated ion traps as an initial step in building a fully chip-integrated trapped ion quantum processor. In my previous research life, I worked in superconducting quantum information, where I performed the first continuous high-fidelity measurement of a superconducting qubit, and studied quantum feedback, measurement backaction, and parametric amplification.

I am a staff physicist at the National Institute of Standards and Technology (NIST), where I am part of the Ion Storage Group. Our group carries out experiments in trapped ion quantum information, as well as in quantum simulation, ultraprecise trapped-ion optical clocks, and precision metrology. Our labs are located on the NIST campus. We are always looking for skilled and motivated graduate students and postdocs.

Selected publications

  • R. Srinivas, S. C. Burd, H. M. Knaack, R. T. Sutherland, A. Kwiatkowski, S. Glancy, E. Knill, D. J. Wineland, D. Leibfried, A. C. Wilson, D. T. C. Allcock, and D. H. Slichter. “High-fidelity laser-free universal control of trapped-ion qubits.” Nature 597, 209 (2021).
  • S. C. Burd, R. Srinivas, H. M. Knaack, W. Ge, A. C. Wilson, D. J. Wineland, D. Leibfried, J. J. Bollinger, D. T. C. Allcock, and D. H. Slichter. “Quantum amplification of boson-mediated interactions.” Nature Physics 17, 898 (2021).
  • S. L. Todaro, V. B. Verma, K. C. McCormick, D. T. C. Allcock, R. P. Mirin, D. J. Wineland, S. W. Nam, A. C. Wilson, D. Leibfried, and D. H. Slichter. “State Readout of a Trapped Ion Qubit Using a Trap-Integrated Superconducting Photon Detector.” Physical Review Letters 126, 010501 (2021).
  • J. C. Bardin, D. H. Slichter, and D. J. Reilly. “Microwaves in Quantum Computing.” IEEE Journal of Microwaves 1, 403 (2021).
  • R. Srinivas, S. C. Burd, R. T. Sutherland, A. C. Wilson, D. J. Wineland, D. Leibfried, D. T. C. Allcock, and D. H. Slichter. “Trapped-ion spin-motion coupling with microwaves and a near-motional oscillating magnetic field gradient,” Phys. Rev. Lett. 122, 163201 (2019).
  • S. C. Burd, R. Srinivas, J. J. Bollinger, A. C. Wilson, D. J. Wineland, D. Leibfried, D. H. Slichter, and D. T. C. Allcock. “Quantum amplification of mechanical oscillator motion,” Science 364, 1163 (2019).
  • D. H. Slichter, V. B. Verma, D. Leibfried, R. P. Mirin, S. W. Nam, and D. J. Wineland. “UV-sensitive superconducting nanowire single photon detectors for integration in an ion trap,” Optics Express 25, 8705 (2017).