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Abstract

While economists often treat heteroskedasticity as a statistical technicality,
heteroskedastic outcomes in certain market settings can arise out of heterogeneous
uncertainty. Procurement auction, in particular, poses two sources of uncertainty
because it exhibits both private-value and common-value characteristics. When �rms
cannot observe the number of bidders, a third dimension of uncertainty is added,
and the e�ect of asymmetric information readily emerges in such highly uncertain
environments. By exploiting the heteroskedasticity of normalized bids with respect
to �rm size in highway procurement auctions, I estimate the structural parameters of
both uncertainty and its heterogeneity within a semiparametric generalized method of
moments framework. The estimation results allow further analyses of �rm behavior
and auction design through calibration and counterfactuals. In addition, the paper
shows that structural parameters can be extracted from heteroskedasticity under fairly
simple assumptions, and the method may be extended to the study of other market
settings with heteroskedastic outcomes.
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1 Introduction

Heteroskedasticity is a well-studied problem in statistics and econometrics. It is often seen

as a nuisance in statistical inference, as it can lead to ine�cient and biased standard error

estimates for parameters and must be accounted for in robust analyses. Estimation models

usually assume that the heteroskedasticity exists in the error term, which is a reasonable

abstraction as heteroskedasticity is commonly found in variables of di�ering scales, where

groups of outcomes greater in average magnitude also experience greater variation in realized

values. There is a large body of literature and many widely adopted methods regarding

heteroskedasticity such that it is almost second nature for researchers to apply some type



(CDOT) with relatively rich details, I estimate the structural parameters of both uncertainty

and its heterogeneity with respect to �rm size, which enable further analyses of both �rm

behavior and auction design through calibration and counterfactuals.

Clearly, not all heteroskedasticity indicates heterogeneous uncertainty, such as in the

case of the magnitude of the outcome variable, and it is important to distinguish between

heterogeneous uncertainty and other types of heterogeneity in terms of agents' preferences,

costs, and constraints. In the CDOT data, heteroskedastitcity of bidding behavior persists

after project value has been normalized and magnitude is no longer a source of conditional

variance. However, heteroskedasticity of bidder behavior exhibits no apparent change in the

mean with respect to �rm size, contrary to the conventional wisdom of increasing returns to

scale at �rm level. Since heteroskedasticity is a data variation speci�c in the second moment,

incorporating di�ering beliefs about the variance of private value into a standard �rst-price

auction model lends a plausible explanation for these observations.

I estimate a structural model within a general method of moments (GMM, Hansen, 1982)

framework, which a�ords the ability to specify important assumptions in the second moment

to aid identi�cation. To reduce computational complexity, I adopt a two-stage process where

bidders' private values are �rst estimated semiparametrically, and the main parameters of

interest are then estimated with nonlinear GMM. As a proxy for �rm size, I use the total

number of bids by unique �rms in the sample period, which is also a good measure of

incumbency, another source of asymmetric information. Because �rms cannot observe the

number of biddersex ante, a problem with both endogeneity and simultaneity arises, which

I address with instrumental variables of project value and type that satisfy the exclusion

restriction with normalized bids. To account for market factors and potential issues with

temporal autocorrelation outside of a panel or time-series framework, I control for additional

variations using contemporaneous and lagged construction permit data in Colorado.

I �nd that small �rms face signi�cantly greater uncertainty in private value and, to a

lesser extent, in common value as well. Calibration analysis show that that �rms generally

anticipate the number of bidders well from public signals despite not observing it directly,

although smaller �rms more often overestimate the amount of competition. Through



either analytical or computational intractibility, often due to probabilistically constructed

treatment for unobserved variables, such as losing bids. More recent literature makes

heavy use of nonparametric methods for identi�cation of private value distribution under

various types of auction setting and data restrictions, following the seminal work of Guerre

et al. (2000)4. Within such literature, public project procurement, in particular highway

construction procurement with higher value projects and more regulated bidding procedures,

has proven fertile ground for auction analysis and provides useful precedent for this paper.

As a matter of public records, procurement auction data tend to be more accessible, if not

more complete, which partly facilitates the study of bidder heterogeneity both in terms of

private value5 and bidding behavior6.

Understanding heterogeneous uncertainty can be important to various microeconomic

applications. In auctions, speci�cally, one can no longer rely on revenue equivalence to expect

similar revenue or expenditure outcome when information is asymmetric and uncertainty is

heterogeneous and therefore bidding outcome varies based on design. Government agencies

spend a signi�cant portion of their resources on private contractors to provide a myriad of

goods and services. While the methods of procurement vary, open market contract bidding

is often a preferred mechanism that has several advantages, such as transparency, avoidance

of favoritism and nepotism, competitive pricing, and a selection of quality7. The government

also supports tax payer, citizen, and community interests such as minimizing expenditure

and expanding access to disadvantaged businesses8. Having a structural understanding of

the dispersion of uncertainty among di�erent business partners can inform the assesment of

performance in achieving these goals. Given the breakdown of revenue equivalence, having

a measure of heterogeneous uncertainty can also aid in optimizing procurement design to

better achieve both expenditure and a�rmative objectives9.

et al. (1995), etc..
4Notable additional works and extensions of nonparametric identi�cation include Elyakime et al. (1994);

Athey and Haile (2002); Fevrier (2008); Henderson et al. (2012); Armstrong (2013);etc..
5Krasnokutskaya (2011) and Armstrong (2013) both investigate the identi�cation of private value under

unobserved heterogeneity with Michigan highway procurement data..
6De Silva et al. (2003) �nds that incumbent tend to bid more aggressively (lower) in Oklahoma highway

procurement auctions.
7Bajari et al. (2008) provide some empirical comparison between auction and negotiation in procurement

and suggest some drawbacks of procurement auction despite its popularity.
8Nakabayashi (2013) investigates the e�ect and e�cacy of small business set aside in public construction

projects in Japan and found that while many business would not participate without the set aside, it also
increases government cost due to reduced competition. CDOT does not have a speci�c small business carve
out; instead, it takes a�rmative action toward disadvantaged businesses through its Disadvantaged Business
Enterprise Program (Colorado Department of Transportation).

9In procurement auction analysis by civil engineers and �nancial planners, bid spread is often of
particularly interest, though it is often done in a descriptive manner (Skitmore et al.





� Potential contractors submit sealed bids with itemized cost information. The bidders

are unable to observe the identities, the number, or the bid amounts of other bidders

before the winner is announced.

� The bids are compared to an engineer's estimate produced internally with engineering

and market assumptions. The engineer's estimate is also sealed at the time of the

bid letting. The lowest bidder usually wins, provided that the submission is deemed

feasible, adequate, and does not unreasonably deviate from the engineer's estimate in

either direction11.

� Once a winner is announced, the engineer's estimate and all bids, including each

bidder's itemized cost, are announced publicly.

A few straightforward observations can be made about this bidding procedure. First, the

format is a variation of the �rst-price sealed-bid auction, but with a common value component

in the form of engineer's estimate that is opaque to bidders. Second, bidders are shielded

from the number and the identity of other bidders, which adds additional uncertainty.

Conversely, past bidding and cost statistics are published in great detail as a matter of

transparency and public accountability, which means that �rms may use this information to

reduce uncertainties in this highly uncertain bidding format.

In addition, CDOT takes a�rmative action toward small businesses and disadvantaged

businesses (those owned by minorities, women, and other socially and economically

disadvantaged individuals) through various programs and services, and the agency has an

interest in ensuring that these business have access to its projects and are represented.

2.2 Summary statistics and descriptive analysis

Projects range from tens of thousands to tens of millions of dollars and it presents several

statistical problems, such as di�culty of comparison, very large heteroskedasticity, and

uncertain latent private value estimation. Normalizing bids by the engineers' estimate could

solve the problem if bidding behavior in ratio terms is not in
uenced by project size, and

descriptive analysis shows that it appears not. In fact, the bid-to-estimate ratio over the

years exhibit a very consistent and well-behaved log-normal distribution (Figure 1):

The log-normal distribution of bid-to-estimate ratio (relative bid) further suggests that

the bid generating process for individual bidders follows a Cobb-Douglas form, as log-normal
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Figure 1: Kernel density estimate of bid distributions by size cohort.

distribution describes the product of random variables of certain attributes. In addition,



Figure 2: Relative bid spread by annual bidding size cohort. Red line denotes �tted value
to size. Color spectrum denotes distribution of logged relative bid.

Figure 3: Quarterly average of 1st, 2nd , and 3rd relative bid and number of bidders.

8



Table 2: Descriptive OLS coe�cients of determination (R2).

Variable Firm Size Number of bidders Relative bid

Firm size - 0.0000 0.0005

Project type 0.0389 0.1494 0.0226

Project value 0.0080 0.0036 0.0067

Number of bidders 0.0000 - 0.0065

value and project type (Table 2). In addition, there appears to be little linear relationship

among �rm size, project type, project value, relative bid, and number of bidders, suggesting

that entry by �rms of di�erent sizes is not particularly predicated on project type and

project value. Echoing Figure 2, �rm size is a particularly poor linear predictor for bid

outcome. However, the inertness of relative bids to seemingly in
uential factors suggests

that the underlying data generating process is stable and well-behaved and the relative bid

construction may be a good normalization technique to study bidding behavior between

projects of di�ering scale.

One confounding result is that the relative bids exhibit classical auction theory behavior

with regard to number of bidders, despite that the bidders are not able to observe it. The

co-movement of quarterly average 1st, 2nd , and 3rd bids (Figure 3) sheds light on this question.

If bidding behavior exhibit temporal synchronicity, it suggests that it is in
uenced by market

forces, which a�ect both entry and private value. If outside market o�ers good opportunities,

a resource-constrained �rm faces a higher opportunity cost of entering the highway bidding

market, which would raise the �rm's private value and inhibit entry.

Indeed, the relative bid proves highly sensitive to market conditions, as shown in �gure 4,

where the an ARIMA model anticipates shocks well with construction market indicators12

(lagged monthly values), and the selected market variables prove to be a good predictor of

bidding behavior. This o�ers an important insight to the e�ect of how exogenous shocks and

unknown number of bidders should be treated in the empirical analysis.





distributed among is and j s while independently distributed amongks. Assume also that

the benchmark value of the project, �vj is generated by a similar process,

�vj =
Y

k

�X � k
j;k (2)

where �X j;k is similarly distributed as X i;j;k . The Cobb-Douglas function itself is irrelevant

to subsequent modeling. However, it has two important implications. First, sinceX �;ks are

independently distributed, vi;j is log-normally distributed. This is a result of the Central

Limit Theorem such that the product of independent random variables has a log-normal

distribution. Second, because �vk is similarly distributed as vi;j , the relative private value

r i;j =
vi;j

�vj



without necessarily specifying any distributional parameters. They also have a �rm-speci�c

approximation of, or con�dence in, the variance,� i � , where� i > 0. Note that because� j is

the normal counterpart of the mean of log-normal random variabler i;j , and

E[r i;j ] = e� j + � 2

2 6= e� j (4)

As such,� i can considered the parameter of heterogeneous private value uncertainty, and

� i;j



Figure 5: Numerical results ofB(r i;j ) response to various changes in parameters.

standard �rst-price auction model then yields the optimal bidding function21 22

B(r i;j ) = r i;j +

R1
ln r i;j

[1 � �( lnx � � i;j


 i �
)]n j � 1dx

[1 � �( ln r i;j � � i;j


 i �
)]n j � 1

(7)

Figure 5 shows the the responses ofB(r i;j ) to various changes in parameters. Note

that � i;j and � i � are parameters of the normal distribution from log relative values and are

lower in magnitude compared tor i;j . It is a necessary result that@B(�)
@ri;j

> 0 as increasing

monotonicity of B(�) in r i;j is a requirement for 7c127(t)-247(for)-05 -1.7t1.49 0 i707)



Figure 6: Simulated results of bid spread kernel density estimates with di�ering uncertainty
from the same distribution of private values.

when holding belief in mean relative value constant, a higher spread 
attens the distribution

with a longer right tail and improves the probabilistic standing the �rm, hence the �rm bids

more con�dently. As a result, for any given� and � , higher �



demonstrate a need to identify, separate, and parameterize these two opposing e�ects of

uncertainty in the estimation strategy through a structural approach.

4 Estimation Strategy

There are several challenges to the identi�cation of the structural model. First, given the

highly nonlinear, algebraicly intractable form of the behavioral solution, the estimation

equation must be structured in a manner that ensures identi�cation. Second, as discussed

in the Data section, there exists a high degree of endogeneity and simultaneity between

the relative bids and the number of bidders, which is not observable to the �rmsex ante.

Finally, the same nonlinearity and intractability, along with the number of observations and

estimation parameters, imposes a large numerical complexity, and care must be taken to

reduce the computational expense. To address these issues, I adopt a generalized method

of moments (GMM) framework that incorporates instrumental variables and nonparametric

techniques.

4.1 The structural model

4.1.1 Estimation equation

The relative private value r i;j;t is unobserved, but it can be modeled as a latent variable

dependent on manifest variables. Following Lafront et al. (1995), I assume that the �rm's

reservation valuation is determined by the function24

r i;j;t = e� i + M 0
t B M (8)

Where � i is the �rm �xed e�ect and M t is the vector of market factors. Di�ering from

Lafront et al., however, is that the structure does not include any �rm characteristics, such

as �rm size, as explanatory variables of private value. Given the focus of identifying the



outside opportunities. In this sense, the estimated �xed e�ect may not necessarily re
ect

the �rm-speci�c cost of construction alone. This simpli�es the estimation procedure such

that unobserved heterogeneity in bidding decision need not be addressed. The private values

are estimated apart from the main estimation equation semiparametrically and the method

is described in section 4.3 Implementation.

The structural model derives directly from the behavioral framework. Given the

construction of the optimal response function, generalized method of moments is used to

estimate the structural model below:

yi;j;t = r i;j;t +

R1
ln r i;j;t

�
1 � �

�
x� s

� �
i � j;t

� r s� �
i

�� n j � 1

dx
�

1 � �
�

ln r i;j;t � s
� �
i � j;t

� r s� �
i

�� n j � 1

| {z }
bi;j;t

+ " i;j (9)

where � r = [( I � 1)� 1
P

i � i ]
1
2 is the standard deviation, and� r = I � 1

P
i � i the mean,

of private values calculated from the �xed e�ect estimates. The structural equation also

presents the two other main parameters of interest: private value heterogeneous uncertainty

parameter � � and common value heterogeneous uncertainty parameter� � with regard to

�rm size. Contrasting the optimal bidding function,� r s
� �
i substitutes for � i � and s� �

i � j;t

substitutes for � i;j . A negative � � would support the hypothesis that smaller �rms have



normalization, because the magnitude of relative bid is still a�ected by project value through

the number of bidders, although the project value is no longer correlated with the error term.

Second, as discussed in the Data section, there is a strong simultaneity between the number

of bidders and bidding behavior based on market conditions, which causes the same issues

as endogeneity in estimation. Although it is common in empirical auction studies to assume

that the number of bidders is known, such assumption in the presence of both endogeneity

and simultaneity will cause the estimators to be biased, and while the number of bidders

does not require a parametric estimator itself as the exponent of the survival function, it will

attenuate the estimation of other parameters of bidding behavior in the nonlinear model as

the observed number of bidders strongly correlates with bid markup beyond its actual e�ect.

Instrumental variable is an obvious strategy to address this issue. Assuming a Poisson

data generating process for the number of bidders with an exponential link function:25:

E[njX IV ] =



The model also partially abstracts from endogenous entry with respect to �rm size except

for the correlations picked up by the covariates in the structural model. This is justi�ed by

the observations from Table 2 that there is little pairwise linear relationship among �rm size,

project type, and project value. The limitation of this abstraction is brie
y discussed in the

Conclusion.

4.2 Generalized Method of Moments

The GMM estimator is chosen due to its ability to specify an important second moment

assumption that is discussed in subsections 4.2.1 and 4.2.2. At minimum, the GMM estimator

requires the �rst moment conditiosn that E[" i;j jW ; � 0] = 0, where W 2 RK +1 contains

1 containing dependent variableY , explanatory variablesX , and additional instrumental

variables, with � 0 being the vector of estimation parameters � at their true value. The

error term in the nonlinear structural equation is assumed to be additive iny, and the error

term is therefore simply" i;j = yi;j;t � bi;j;t , on which the moment conditions are de�ned in

the following subsection, and becauseW only fully appear in " i;j , we de�ne Z as the vector

of explanatory and instrumental variables for other constituent expressions in the moment

conditions.

4.2.1 Moment conditions

All moment conditions are constructed around the usual assumption that the vector of

functions of Z, h(Z i;j;t ; �), is independent from the error term " i;j = yi;j;t � bi;j;t such that

E[(yi;j;t � bi;j;t )k jh(Z i;j;t ; �) ; � 0] = E[(yi;j;t � bi;j;t )k ] = � ";k (11)

where � 0 is the true value of the the parameters and� ";k is the kth central moment of " i;j .

This leads to

E[h(Z i;j;t ; �)( yi;j;t � bi;j;t )k j� 0] = h(Z i;j;t ; �) � ";k (12)

For the estimation, conditions for the �rst three moments are used:

g(W i;j;t ; � 0) = E

2

6
4

h(Z i;j;t ; �)( yi;j;t � bi;j;t )

h(Z i;j;t ; �) f � 2
y(si ) � (yi;j;t � bi;j;t )2 � [~bi;j;t � � y(si )]2g

h(Z i;j;t ; �)( yi;j;t � bi;j;t )3

3

7
5

� 0

= 0 (13)

The �rst moment conditions are conventionally de�ned to assume that the error term has

zero mean and independent fromZ. While the �rst moment conditions are usually su�cient

18



for many econometric problems, the structural model requires some higher moments be

de�ned as well to achieve identi�cation. Most importantly, the �rst moment conditions

alone do not account for any potential heteroskedasticity with respect to �rm size in the

error term (Proposition 226).

The problem is resolved in the second moment conditions, where� y(si ) is the conditional

variance ofy on �rm sized si , and it is derived from the fact that � 2
y(si ) = � 2

b(si ) + � 2
" under

the assumption that distributions of private value and error term are independent from each

other, which results in additive variance of its constituent variables. It also relies on the

assumption that heteroskedasticity exists in the dependent variable through heterogeneous

uncertainties in the bidding function, but not in the error term, at least not with regard

to �rm size. This is a novel assumption based on the structural model, see section 4.2.2

Heteroskedasticity for more discussion.

The third moment condition assumes that that residuals are symmetrically distributed.

While b has an appearance of log-normal distribution with a clear skewness, the random

noise after the optimal bidding strategy based on the log-normally distributed private value

is accounted for is assumed to be symmetrically distributed around 0.

h(Z i;j;t ; �) can be a vector of any functions of Z i;j;t to the extent that the model can

still be identi�ed, including simply the vector Z i;j;t . Thereforeg(W i;j;t ; �) is a 3 � p matrix

wherep is the number of parameters. To obtain optimal estimators of � in a nonlinear GMM

model, the vector of functions of explanatory and instrumental variables takes a certain form

of the gradient of the optimal bidding functionb:

h(Z i;j;t ; �) =
r � b(� jZ i;j;t )

� " (Z i;j;t )
=

@b(Z i;j;t ; �) =@�
� " (Z i;j;t )

(14)

Where � " (W i;j;t ) is the heteroskedastic error dependent onW i;j;t of an unknown

form. While there are methods to approximate� " (W i;j;t ), it is not necessary as the

heteroskedasticity with respect to �rm size is specially treated (see the following subsection)

while the model abstracts from other sources of heteroskedasticity and, if present, uses a

heteroskedasticity-consistent model. The optimalh(



classes of parameters, see section A.3 First-order derivatives27.

4.2.2 Heteroskedasticity

In addition to the second central moment assumptionE[(yi;j;t � bi;j;t )2jh(Z i;j;t ; �) ; � 0] = Z� 2
" ,

the second moment conditions also rely on two additional assumptions that

V [yi;j;t jsi ] = E[(y � � y(si ))2] = E[(y � � y(si ))2jh(Z i;j;t ; �) ; � 0] = � 2
y(si ) (16)

where� y(si ) = E[yi;j;t jsi ] = E[bIV
i;j;t ] + E[" i;j ] = E[bIV

i;j;t ], and

E[bi;j jh(Z i;j;t ; �) ; � 0] = � 2
b(Z) (17)

where� 2
b takes the form of [~bi;j;t � � y(si )]2 as the �tted value b̂i;j;t is correlated with the error

term under instrumental regression. Instead, the �tted~bi;j;t uses the �tted values ~ni;j;t of nj

using Poisson regression againstZ as described in section 4.2.2 Heteroskedasticity, similar

to the �rst-stage estimation in 2SLS. The �tted ~ni;j;t can be considered a combined signal of

number of bidders observable to both �rms and the investigator.

Because the data is not a random sample,� 2
y(si ) is assumed to be the sub-population

variance of all sub-population observations in the data, and it takes the form of and

� 2
y(si ) = 1

N

P
(y � �ysi )

2 (cf. sample variance estimator ^� 2
y(si ) = 1

N � 1

P
(y � �ysi )

2). The

population variance assumption is a strong but defensible one for want of a means of

incorporating this estimation into the structural estimation itself. This assumption allows

us to estimate sub-population variance directly without changing the structural estimation

while still maintaining a higher level of generality than assuming a known private value

distribution. Properties of the estimator with a random sample is worth exploring in further

studies.

The �rm-size-dependent outcome variance� 2
y(si ) can be estimated in three ways: simple

cohort sub-population variance, parametric �t, and non-parametric �t. The simple cohort

sub-population variance can be calculated by the equation above. However, due to that

sub-population variance depends on the initial random draw from the distribution ofr i;j ,

this method is akin to measurement with error and may subject the structural estimation

to attenuation bias.



� 2
y(si ) = � 2

ys�
i + " y;i (18)

where � y and � can be estimated using non-linear least squared (NLLS) by using the

sub-population variance for� 2
y(si ). Alternatively, it can also be estimated by the Method of

Moments (MM)28, using the following �rst and second moment conditions by de�nition of

mean and variance:

gy(yi;j;t ; �) = E

"
(yi;j;t � � y + � � si )

� 2
ys� �

i � (yi;j;t � � s)2

�
�
�
�

"
1

si

##

� 0

= 0 (19)

where � y, � 2
y, � � and � �



Figure 7: Cohort variance with �tted lines.

to note that the underlying yi;j;t � � y(si ) used to estimate� 2
y(si ) is still correlated with " i;j ,

without which � 2
y(si ) = � 2

b(si ) + � 2
" would not stand.

4.2.3 Identi�cation

For the main parameters of interest, the model mainly utilizes the GMM estimator as

described by Hansen (1982) and this subsection presents an overview of the identi�cation

and properties of the estimator. The moment conditions are estimated by taking its sample



G0 = plim M � 1
X

M i;j;t

�
@g(W i;j;t ; �)

@�0

�

� 0

(24)

The local identi�cation of the nonlinear model requires the su�cient and necessary rank

condition for the estimatedĜ = G(�̂) that

rank(Ĝ) = p (25)

In other words, the estimatedĜ must be of full rank for the model to be identi�ed,

otherwise the variance-covariance matrix (under optimal weighting matrix)

V̂ [�̂ ] = M (Ĝ0wM Ĝ)� 1 (26)

cannot be calculated asĜ0wM G would be singular. The optimal weighting matrix is

calculated as

wM = M � 1
X

M i;j;t

[gg0j� o] (27)



introduces additional variations to the matrix of instruments. Alternatively, generalized

inverse may be used to produce variance-covariance and weighting matrices when numerical



private values to be identically distributed.

Krasnokutskaya (2011)32 proposes a log-decomposition of bids if the e�ect of

heterogeneity is multiplicative factor. This works well with the structural model, in which

the private value is de�ned as equation (8



ln �r i;j;t = �� i + M
0

t
�B M + r �" i;j;t

The reasons for the re�tting are threefold. First,� i s still need to be estimated to produce

� r and � r . Second, the re�tting corrects some of the correlation betweenM t and ~ni;j;t that

would bias ~B M through omitted variables. Third, the observed bids are not assumed to

be perfectly in accordance with the equilibrium strategy, and using the pseudosample itself

in place of r i;j;t over�ts the model; instead, the re�tted values, which are the conditional

expectation of the private values, accounts for the measurement error in the pseudosample

and reduces the likelihood of estimation bias.

Once �r i;j;t s are estimated, they are plugged back into the structural model. Now the

parameters that remain to be estimated are only� � and � �
34. The �xed e�ect dummies are

hereon dropped fromZ for the main estimation, while M t are retained as instruments for

nj .

5 Results and analyses

This section presents the estimation results and a brief discussion on policy implications.

Several variables are transformed prior to the analysis. The market factors are converted

to 2005 dollars using Construction Pricing Index and scaled to the millions. The engineer's

estimates are also converted to 2005 dollars and logged. Number of bids within sample

period is normalized to 1 against the �rm with the highest number of bids based on the full

valid sample before data cleanup and trimming. Auctions with only 1 bidder are removed

from the sample prior to estimation. A period variable, measured by month, is included as

an additional instrument to account for any unmodeled time trend.

5.1 Estimation results

Figure 8 shows the estimation results for the private value. The top panels compares the

estimated private values to observed bids, and the bottom panels visualize the kernel density

estimates. The left panels show the results for the pseudosample, and the right panels for

the �tted private values.

Given the construction of the pseudosample, the pseudo private value is necessarily less

than or equal to the observed bids, while around one third of the �tted private values are

greater than the observed bids (belowb = r line). This does not pose a problem as the

34In future exploration of this working paper, the �tted parameters will serve as starting values for the
full GMM estimation with optimal h(Z) within a high-performance computing environment.
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Figure 8: Estimated private value.

di�erence is absorbed into the error term, and the linear �t shows an average of 8:55%

markup using the �tted values.

Figure 9 shows the estimated distribution of �xed e�ects �tted from the pseudosample.

Counterintuitively, I �nd that larger �rms tend to have a higher private value despite the

assumption of economy of scale. However, as the private value estimate is not limited to

accounting cost alone, this �nding is not a surprise. Larger �rms face more opportunity cost

through at least two channels: �rst, the greater capacity of large �rms bring about more

opportunities within multiple markets, some of which may have better value; second, larger

�rms are also more likely to be closer to or exceeding capacity constraint since they have

a revolving inventory of deliverables, whereas smaller �rms tend to cycle through growing

and lean seasons. In addition, this result is consistent with both theoretical predictions and

observations; despite having greater opportunity cost, larger �rms bid lower on average due

to having less uncertainty in both private and common values.

Tables 3 shows the main parameter results. The models without CV uncertainty assumes

� � = 0. As expected, an uninstrumentednj attenuates the heterogeneity estimates for both

private and common values, although not to a great degree. The heterogeneous private value

uncertainty estimate, � � , remains signi�cant in all speci�cations, and the results from Model

3(4) suggests that one-time bidders face as much as eight times more uncertainty than the

most frequent bidders, although the e�ect tapers o� quickly as �rm size increases.
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Figure 9: Estimated �xed e�ects.

Table 3: Estimation Results.

Model Speci�cation

IV for nj No Yes

CV uncertainty No Yes No Yes

Parameter 3(1) 3(2) 3(3) 3(4)

� � -0.34789 -0.34581 -0.38698 -0.39061

(0.00707) (0.01201) (0.00577) (0.00964)

� � 0.02389 -0.13324

(0.33126) (0.21474)

First-stage results

� r 0.20435

E(� i ) 0.04346

Total observations 5682



Table 4: Alternative speci�cations for common value uncertainty.

Model Speci�cation

� i;j;t Benchmark M
0



Figure 10: Estimated error term.

those of� � . While Model 4(2) deviates from the theoretical de�nition of common value and

Model 4(3) can be too volatile due to the introduction of one more parameter without added

covariates, these additional results support the heterogeneous private and common value

uncertainty estimate from the benchmark model. The terms� �
i � r by itself is more di�cult

to interpret; however, the result from Model 4(1), which only estimates the e�ect on �rm

size on the belief of� r , conforms to the casual prediction of Proposition 1 that smaller �rms

observe a lower� i;j .

Figure 10 shows the estimated error term. The �rst and third moment conditions are

well attained (left panel). For the second moment conditions, heteroskedasticity is mostly

reduced except for the smallest �rms (right panel)36. This is likely due to that the bidding

behavior of small �rms is not as well explained by the structural model as the larger �rms,

suggesting that smaller �rms abide by the optimal bidding strategy to a lesser degree and

tend to bid more erratically, giving rise to another source of the heteroskedastic outcome

related to uncertainty but not accounted for in the model.abide by the optimal bidding

strategy to a lesser degree and tend to bid more erratically, giving rise to another source

of the heteroskedastic outcomeabide by the optimal bidding strategy to a lesser degree and

tend to bid more erratically, giving rise to another source of the heteroskedastic outcome

5.2 Analysis

The estimation results allow the analysis of �rms' behavior facing uncertain number of

bidders through a simple calibration exercise, as well as the counterfactuals of potential

36



outcomes when the heterogeneity of uncertainty is removed. For the remaining discussion,

the benchmark model is used, which contains the most conservative estimates for

heterogeneous uncertainty.

5.2.1 Number of bidders

While the model assumes that" i;j is independent fromZ, the �tted bi;j;t is not in the

instrumental variable model. As such, the correlation between the instrumental variables and

yi;j;t can be estimated by partially �tting the structural model with the estimated parameters

while substituting nj with

�ni;j;t = � (nj ; ~ni;j;t ; si jH ) (34)

whereH = f � 1; � 2; � 3g are the the parameters to be calibrated. The calibration uses the

method of moments with the following moment conditions:

E[yi;j;t � �bi;j;t j~ni;j;t ; nj � ~ni;j;t ; si ]H 0 = 0 (35)

where ~ni;j;t is the combined signal for the number of bidders obtained from the Poisson

regression used in~bi;j;t of the second moment condition and in the nonparametric estimation,

and nj � ~ni;j;t is the di�erence between observed number of bidders and the combined signal.

In this sense, ~ni;j;t is the public signal observable to both �rms and the investigator, and

nj � ~ni;j;t is the additional variation in the number of bidders for which the investigator

observes no signal, but it may be signaled to bidders. The calibrated parameters would

describe how well bidders are able to anticipate both components of the number of bidders.

In Model 5(1), the results show that �rms in general anticipate the number of bidders

well, particlarly using signals both observable to the investigator, and to a lesser extent the

remaining variations. The previous section �nds that while uninstrumentednj attenuates



Table 5: Calibrated �rm anticipation of the number of bidders.

Model Speci�cation

� (nj ; ~ni;j;t ) � 1~ni;j;t + � 2(ni;j � ~ni;j;t ) [� 1~ni;j;t + � 2(ni;j � ~ni;j;t )]s� 3
i

Parameter 5(1) 5(2)

� 1 1.05400 0.80147

(0.04464) (0.05348)

� 2 0.7789 0.5289

(0.1354) (0.10642)

� 3 -0.13753

(0.02839)

The bid submission process does not conveniently allow �rms to simultaneously observe

the number of bidders. However, the contingent bid design proposed by Harstad et al. (1990)

lets �rms submit multiple bids at once, each for a di�erent realized number of bidders, thereby

removing this dimension of uncertainty37. The e�ect of removing nj uncertainty is discussed

in the following section.

5.2.2 Expenditure and allocation

Table 6 shows the counterfactuals of average lowest bids grouped by project value, measured

by engineer's estimates, under various scenarios. The predicted scenario (Model 6(1) ) uses

the �tted bids with combined signal ~ni;j;t , the � � ; � � = 0 scenario assumes a hypothetical

removal of the heterogeneity in both private-value and common-value uncertainty, and the

known nj scenario uses the �tted bids with observednj .

Given that the observed bids have a larger variance than the predicted bids, the predicted

average lowest bids are conceivably higher than observed. In the equalized private and

common value uncertainty scenario, the average lowest bid in all project value tiers are

lower than the predicted. In the knownnj scenario, the opposite is true, which is consistent

with the overestimation of competition, especially by smaller �rms, discussed in the previous

section.

Alternatively, Table 7 shows the average bid by project value. Here in the equalized

37Although �rms may adopt a di�erent strategy due to increased bidding cost and e�ort to conceal private
value.
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Table 6: Average lowest bid by project value.

Scenario Observed Predicted � � ; � � = 0 Known nj Both

Project value Projects 6(1) 6(2) 6(3) 6(4)

$50K-$500K 267 1.0060 1.0437 0.9851 1.0760 1.0048

$500K-$1.2M 267 0.9855 1.0348 0.9833 1.0687 1.0055

$1.2M-$2.5M 239 0.9834 1.0390 0.9908 1.0657 1.0117

$2.5M-$5M 227 0.9662 1.0471 1.0079 1.0707 1.0236

$5M-100M 231 0.9708 1.0489 1.0137 1.0686 1.0283

Total 1231 0.9832 1.0425 0.9954 1.0700 0.0141

private and common value uncertainty scenario, the average bid is lower than both observed

and predicted accounts, with only small di�erences between the observed and the predicted.

In the known nj scenario, while the average bid is still mostly higher, the di�erence is quite

reduced. The average bid counterfactual lends a robust additional support for the cost-saving

aspect of equalizing private and common value uncertainty, especially given the conditional

expectation nature of regression models.

Under the same scenarios, I also examine the potential allocational outcome with respect

to �rm size. Table 8 shows the lowest bid share by size cohort38



Table 7: Average bid by project value.

Scenario Observed Predicted � � ; � � = 0 Known nj Both

Project value Projects 7(1) 7(2) 7(3) 7(4)

$50K-$500K 267 1.1665 1.1164 1.0583 1.1318 1.0666

$500K-$1.2M 267 1.1136 1.0999 1.0476 1.1182 1.0570

$1.2M-$2.5M 239 1.1063 1.0984 1.0534 1.1132 1.0626

$2.5M-$5M 227 1.0742 1.0916 1.0577 1.1031 1.0648

$5M-100M 231 1.0713 1.0955 1.0642 1.1048 1.0701

Total 1231 1.1065 1.1005 1.0563 1.1143 1.0643

Table 8: Lowest bid share by size cohort.

Scenario Observed Predicted � � ; � � = 0 Known nj Both

Firm size 8(1) 8(2) 8(3) 8(4)

1 - 25 0.2136 0.1227 0.2900 0.1129 0.2868

26-50 0.1641 0.2071 0.2380 0.1917 0.2429

51-75 0.1795 0.2518 0.2015 0.2299 0.1917

76-100 0.1584 0.2348 0.1795 0.2283 0.1803

101-150 0.1560 0.1129 0.0626 0.1324 0.0626

> 150 0.1284 0.0707 0.0284 0.1048 0.0357
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still lead to both better overall allocational e�ciency and less expenditure uncertainty, with

the increased cost and a�rmative loss mostly compensated for, if combined with reduced

heterogeneity in private and common value uncertainty (Models 6(4), 7(4), and 8(4)).

6 Conclusion

In this paper, I show that smaller �rms tend to have greater uncertainty in procurement

auctions, and with the identi�ed parameters of heterogeneous uncertainty, I also show

that e�orts to reduce heterogeneity in uncertainty may lead to both cost savings for the

government and better allocations to smaller �rms. More generally, I propose, develop,

and solve a model to recover structural parameters of heterogeneous uncertainty through

heteroskedastic outcomes in procurement auctions, and the described method may be

extended to studying the origin of heteroskedastic outcomes in other market settings as

well.

A limitation of the paper is the partial abstraction from the selective entry. While neither

project value or type are found to be good predictors of entry and bidding behavior, and they

are also used as instrumental variables such that the error term cannot be correlated with

these factors, the paper assumes that all projects attract bidders from the same distribution

of private values, which may not be the case if entry is endogenous. In this sense, if projects

more often bid on by smaller �rms tend to have a higher dispersion in private values from

participating �rms, the heterogeneous uncertainty estimate would absorb some of that e�ect,

though the variance itself is still a form of uncertainty even if it is correlated with, but

arguably exogenous to, �rm size. If the opposite is true, the heterogeneous uncertainty

estimate with respect to �rm size would be attenuated. Allowing endogenous entry and

conditional distribution of private values on project value and type, if feasible either through
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A Proofs and Solutions

A.1 Proof of Proposition 1

Given the conversion from log-normal meanm and variancev to normal mean� and variance

� 2

� = ln
�

m
p

1 + v
m2

�
(36)

� 2 = ln
�

1 +
v

m2

�
(37)

� can be rewritten as

� = ln m �
1
2

ln(1 +
v

m2
)

= ln m �
1
2

� 2 (38)

Even if the bidder correctly observesm, a misoberved� i � results in

� i;j = ln mj �
1
2



reservation valuevi
iid� F (vi ), where F (�) is the cumulative distribution function of private

values. The probability that bidder i has the lowest private value amongn bidders is therefore

Sn� 1(vi ), where S(vi ) = 1 � F (vi ) is the survival function of vi . The expected payo� from

any monotonic bidding strategybi is

� (vi ; bi ) = ( bi � vi )S(vi )n� 1 (41)

Let B(vi ) be the optimal bidding function that is monotonically increasing invi and

symmetric under the same belief andB � 1(vi ) be its inverse, the payo� can be rewritten as

� i (vi ; bi ) = ( bi � vi )S(B � 1(bi ))n� 1 (42)

� i (vi ) = ( B(vi ) � vi )S(vi )n� 1 (43)

By Envelope Theorem,

d� i (vi )
dvi

=
@�i (vi ; bi )

@vi

�
�
�
�
bi = B (vi )

= � S(B � 1(bi ))n� 1

�
�
�
�
bi = B (vi )

(44)

= � S(vi )

Integrating the expression above from bidderi 's private value to the upper bound, we

obtain

Z �v

vi

d� i (x)
dx

dx = �
Z �v

vi

S(x)n� 1dx (45)

By the fundamental theorem of calculus, the same integral is also equal to

Z �v

vi

d� i (x)
dx

dx = � i (�v)
| {z }

=0

� � i (vi )

= � � i (vi ) (46)

Because the bidder with the highest reservation has a zero probability of winning, �i (�v) =

0. Settting the two representations of the integral equal, we obtain the optimal bidding
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function

� i (vi ) =
Z vi

v
S(x)n� 1dx (47)

(B(vi ) � vi )S(vi )n� 1 =
Z �v

vi

S(x)n� 1dx (48)

B(vi ) = vi +

R�v
vi

S(x)n� 1dx

S(vi )n� 1
(49)

ReplaceS(�) with the survival function of log-normal distribution expressed in terms of

normal CDF, we arrive at

B(r i;j ) = r i;j +

R1
ln r i;j

[1 � �( lnx � � i;j


 i �
)]n j � 1dx

[1 � �( ln r i;j � � i;j


 i �
)]n j � 1

(50)

A.3 First-order derivatives

Given the estimation equation

yi;j;t = r i;j;t +

R1
ln r i;j;t

�
1 � �

�
x� s

� �
i � j;t

� r s� �
i

�� n j � 1

dx
�

1 � �
�

ln r i;j;t � s
� �
i � j;t

� r s� �
i

�� n j � 1

| {z }
bi;j;t

+ " i;j (51)

Let �( �) represent the normal CDF including all relevant variables. By Leibniz's rule

of integral di�erentiation, the �rst-order partial derivatives of parameters of the structural

equation are calculated as below with simpli�cation steps omitted.

Given ~n = eX IV
0B IV , we have for each� iv 2 B IV

@b
@�iv

=

R1
ln r

@
@�iv

[1 � �( x; �)]~n(� iv )� 1dx

[1 � �( �)]n� 1
�

R1
ln r [1 � �( x; �)]n� 1dx

[1 � �( �)]2(n� 1)

@
@�iv

[1 � �( �)]~n(� iv )� 1

=

R1
ln r x iv n ln[1 � �( x; �)][1 � �( x; �)]n� 1(x; �)dx

[1 � �( �)]n� 1

�

R1
ln r [1 � �( x; �)]n� 1dx

[1 � �( �)]n� 1
x iv n ln[1 � �( x; �)] (52)

Let � (�) represent the corresponding normal PDF to �(�). Given r = e� i + M 0
t B M , for each
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@
@si

V [" jsi ; � 0] =
@

@si

Z

G
[g2(� (si ); � (si )jW ; � 0) � � G]f (" jsi )dg

=
Z

G

@
@si

�
g2(� (si ); � (si )jW ; � 0)f (" jsi )

�
dg

=
Z

G
f (" jsi )

@
@si

g2(� (si ); � (si )jW ; � 0)dg

+
Z

G
g2(� (si ); � (si )jW ; � 0)

@
@si

f (" jsi )dg (62)

Note that het (si ) =
R

G g2(
; � jW ; � 0) @
@si

f (" jsi )dg, then

@
@si

V [" jsi ; � 0] =
Z

G
f (" jsi )

@
@si

g2(� (si ); � (si )jW ; � 0)dg+ het (si ) (63)

Now,

@
@si

g2(
 (si ); � (si )jW ; � 0)

= 2g(
 (si ); � (si )jW ; � 0)
@

@si
g(
 (si ); � (si )) (64)

Sinceg(
 (si ); � (si )jW ; � 0) = 0, we have

@
@si

V [" jsi ; � 0] = het (si ) � (65)

A.5 Proof of inverse bidding function pseudosample estimator

This is a sketch of proof of the pseudosample estimator following Guerre et al. (2000) with

modi�cations for reverse auctions. Rewrite the objective function 41 as

� (vi ; bi ) = ( bi � vi )S(B � 1(bi ))n� 1 (66)

where B � 1
i (bi ) = vi is the inverse optimal bidding function. The �rst-order conditions

become

d
dbi

� (vi ; bi ) = ( bi � vi )(n � 1)S(B � 1(bi ))n� 2S0(B � 1(bi ))( B 0(B � 1(bi )) � 1 + S(B � 1(bi ))n� 1

= [( bi � vi )S(B � 1(bi )) � 1S0(B � 1(bi ))( B 0(B � 1(bi )) � 1 + 1]S(B � 1(bi ))n� 1

= 0 (67)
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Given that S(vi ) = 1 � F (vi ) and B � 1
i (bi ) = vi , simplify to yield the �rst-order di�erential

equation

1 � (bi � vi )(n � 1)
f (vi )

S(vi )B 0(vi )
= 0 (68)

The solution to equation 68 is the same as the solution to the optimal bidding function in

reverse auctions (equation 49). LetSb(�) and f b(�) denote the survival and density function

of bi . SinceB(vi ) is monotonically increasing invi , it must be the case thatSb(bi ) = Pr( b� i >

bi ) = Pr( v� i > bi ) = S(vi ) and that B 0(vi ) > 0 such that f b(bi ) = j d
dbi

B � 1(bi )jf (B � 1(bi )) =

f (vi )=B0(vi ), therefore
f b(bi )
Sb(bi )

=
f (vi )

S(vi )B 0(vi )
(69)

Substitute into 68 we obtain

1 � (bi � vi )(n � 1)
f b(bi )
Sb(bi )

= 0 (70)

which solves to yield the structural form of the inverse bidding function pseudosample

estimator

vi = bi �
1

n � 1
Sb(bi )
f b(bi )

� (71)
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