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Abstract. In this paper, we introduce the concept of a pro�t frontier of continuous order � 2 [0; 1]
and provide an easy to implement nonparametric estimator for such pro�t frontiers. From a sta-
tistical perspective the estimator we propose is, in essence, the estimator for a conditional quantile
with a suitably de�ned conditioning set. Inspired by Aragon et al. (2005) in a production function
setting, instead of studying a traditional pro�t frontier, whose estimation might be very sensitive
to outliers and extreme values, we de�ne a class of pro�t functions of order � based on conditional
quantiles of an appropriate distribution of pro�t, input and output prices. We show these quantiles
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of nonparametric stochastic frontier models include, among others, Kumbhakar et al. (2007) and

Martins-Filho and Yao (2013). A critical drawback of stochastic frontier models is that they gen-

erally require strong distributional assumptions regarding the ine�ciency and noise terms. In

addition, by assumption the stochastic frontier model error terms have a non-zero conditional ex-

pectation, and the average production relation is maintained for all �rms. However, it is highly

possible that the relationship might vary at di�erent e�ciency levels.

On the other hand, nonstochastic frontier models assume that all observations lie inside the frontier



of order



what we call the pro�t function throughout the paper. Given the existence of ine�ciency, our

objective is to estimate pro�t functions and assess �rms’ e�ciency levels. There are a number of

di�erences in estimating a pro�t function compared to estimating a production function. First, the

derivation of the pro�t function relies on many assumptions on market structure and it is di�cult



or producing unit i. We denote the support of f by 	 and focus on the set 	� = f(�; p; w) 2 	 :

P(P � p;W � w) > 0g. Given Cp;w = fP � p;W � wg we let

F (�jCp;w) = P(� � �jP � p;W � w) =
P(� � �; P � p;W � w)

P(P � p;W � w)
: (1)

and give the following probabilistic de�nition of a pro�t function

�(p; w) := inff� 2 [0; B�] : F (�jCp;w) = 1g: (2)

As de�ned, the pro�t function �(p; w



That is, the quantile curves f(�



The concept of pro�t functions of order � can be easily extended to settings where additional

constraints on pro�t and technology are appropriate. we give two examples. First, �rms can face

di�erent production capacities and by consequence di�erent pro�t functions. If a �rm has small

production capacity, the value of pro�t would be small compared to a representative �rm, even if



where � represent the elasticity of market demand and F (�jC�;w) = P(� � �j� � �;W � w): The



and Martins-Filho (2010). The kernels Mk are de�ned as

Mk(x) = � 1

ck;0

kX
jsj=1

ck;s
jsj

K(
x

s
) (7)

where ck;s = (�1)s+kCs+k2k , Cs+k2k are the binomial coe�cients and K(�) is a traditional (seed) kernel



where

f̂(�jCp;w) =
@F̂ (�jCp;w)

@�
=

8><>: 0; if � = 0

(nhn)�1
Pn
i=1 Mk(

�i��
hn

)I(Pi�p;Wi�w)

n�1
Pn
i=1 I(Pi�p;Wi�w)

; if � > 0

and ���;n(p; w) = ���;n(p; w) + (1 � �)��(p; w) for some � 2 (0; 1). In the following section we

provide some asymptotic characterizations for our estimator, including consistency and asymptotic

normality.

3 Asymptotic characterization of ��;n

In this section we provide theorems establishing asymptotic properties of our estimators. All proofs

of the theorems and required lemmas can be found in Appendix. We begin by listing and discussing

assumptions that are su�cient to establish our main theorems.

3.1 Assumptions

Assumption 1. f(�i; Pi;Wi)gni=1 is a sequence of independent random vectors taking values in a

compact set 	� = [0; B�]�SPW where SPW is a compact set in Rd1
+ �Rd2

++. For any i, (�i; Pi;Wi)

have the same joint distribution F and joint density function f as the vector (�; P;W ), f is de�ned

on R� Rd1 � Rd2 with support 	�.

Assumption 2. (i) The seed kernel K(�) is a bounded symmetric density with compact support

[�BK ; BK ] and
R BK
�BK K()d = 0. (ii)

R BK
�BK 

2K()d = �2
K . (iii) For any ; 0 2 [�BK ; BK ],

we have jK() � K(0)j � mK j � 0j for some 0 < mK < 1. (iv) For all �; � 0 2 R, we have

j�(�) � �(� 0)j � m�j� � � 0j for some 0 < m� < 1, where �(�) =
R �
�BK K()d. (v) For �xed k,R

jK(t)jt2kdt <1.

The �rst assumption is standard in the deterministic frontier literature. Assumption 2 is the

same as Martins-Filho and Yao (2008) except (v). We need Assumption 2 (v) for restricting the
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order of bias(See the similar assumption in Mynbaev and Martins-Filho (2010)). Note that (7)

implies that for any k 2 N, the above assumptions also hold for kernel Mk. That is, (i) Mk(�) is a

symmetric bounded kernel function with compact support [�BM ; BM ].
R BM
�BM Mk()d = 0; (ii)R BM

�BM 2Mk()d := �2
M = 2�2

K

Pk
s=1 �k;ss

2; (iii) For any ; 0 2 [�BM ; BM ], we have jMk() �

Mk(
0)j � mM j � 0j for some 0 < mM <1; (iv) For any �; � 0 2 R, we have j�M (�)� �M (� 0)j �

m�j� � � 0j for some 0 < �



Assumption 5A imposes an order 2k Lipschitz condition on Ff (�; p; w) with respect to �. From

the proof of Theorem 1 in Mynbaev and Martins-Filho (2010) we know that boundedness of

F
(2k)
f (�; p; w) implies a Lipshitz condition of order 2k. As a result, Assumption 5B is a more

strict condition than 5A in the special case k = 1. Given Assumption 5A, we can restrict the order

of the bias for our estimator to h2k. Given Assumption 5B, we can obtain a speci�c structure for

the asymptotic bias and variance by using a Taylor expansion.

3.2 Asymptotic Properties

We start by showing that F̂ (�jCp;w) is asymptotically a proper distribution function for kernels

that satisfy Assumption 2.

Proposition 3. Under Assumption 2, we have: (i) F̂ (�jCp;w) is nondecreasing in �; (ii) F̂ (�jCp;w)

is right continuous; (iii) lim�!0 F̂ (�jCp;w) = 0; (iv) For any (p; w), there exists some N(p; w) such

that for all n > N(p; w), we have lim�!1 F̂ (�jCp;w) = 1.

The next theorem establishes consistency of ��;n.

Theorem 1. Let hn be a nonstochastic sequence of bandwidths such that 0 < hn ! 0 as n !

1. Given w 2 Rd2
++, p 2 Rd1

+ , suppose there exist N(p; w) such that when n > N(p; w) we

have minfi:Pi�p;Wi�wg�i � hnBM . Under Assumption 1-4 along with Assumption 5A (or 5B), if

H2k(�; p; w), Ff (�; p; w) and "2k(�; p; w) are bounded for all (�; p; w) 2 	�, we have

��;n(p; w)� ��(p; w) = op(1): (9)

The next theorem shows that under suitable normalization and centering ��;n(p; w) is asymptoti-

cally distributed as as standard normal.

Theorem 2. Let hn be a nonstochastic sequence of bandwidths such that nh2
n !1 and nh4

n = O(1)

as n!1. Given w 2 Rd2
++, p 2 Rd1

+ , suppose there exist N(p; w) such that when n > N(p; w) we

have minfi:Pi�p;Wi�wg�i � hnBM . Then,
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density function is, the faster the bias term would vanish.

4 Monte Carlo Study

4.1 Setup and Implementation

In this section, we design and conduct a small Monte-Carlo simulation to implement our estimator

and investigate some of its �nite sample properties. We also compare the performance of our

smooth estimator and an similar estimator based on the empirical estimation. The data generating

process is given by

�i = �(Pi;Wi)Ri i = 1; ::; n

Ri = exp(�Zi); Zi � Exp(�)

where �i represents pro�t, Pi and Wi represent output and input prices. In this simulation, we

assume both output and input price are scalars. Prices are uniformly drawn from a meshgrid

[pl; pu] � [wl; wu] = [1; 3] � [1; 3]. Ri = exp(�Zi) represents e�ciency score for each unit i. Zi are

independently generated from an exponential distribution with parameter � = 1=3. As a result

the density function of Ri is f(r) = 3r2 with support (0; 1] and a mean 0:75. �(p; w) is the

pro�t function. In this simulation we consider the functional form �(p; w) = p6=5w�6=5. One can

easily verify this function satis�es all properties of a pro�t function: a) nondecreasing in p and

nonincreasing in w; b) convex in both p and w; c) homogenous of degree one, and d) continuous.

Several experimental designs are considered: We estimate pro�t frontiers of order � = 0:25; 0:5; 0:75

and 0:99 using Mk kernel functions with k = 1; 2 as well as an empirical distribution. In each

experiment, We consider two sample sizes n = 200 and n = 400 and perform 2000 iterations to

obtain the averaged absolute value of bias and root mean squared error of each estimator.

The empirical pro�t frontier of order � is estimated as follows: Let Np;w =
Pn

i=1 I(Pi � p;Wi � w).

For j = 1; :::; Np;w, get the order statistic of the observation �(ij) such that �(i1) � �(i2) � ::: �
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�(iNp;w ). The empirical conditional distribution F̂e(�jCp;w) is

F̂e(�jCp;w) =

PNp;w
j=1 I(�(ij) � �)



in Mynbaev and Martins-Filho (2010), we can estimate I1, I2 and f a suitably de�ned Rosenblatt

density estimator. The optimal bandwidths for the estimators with higher k are yet to be obtained.

We use the same bandwidth as k = 1.

4.2 Results and Analysis

Table 1 gives the bias and root mean square error of our smoothed estimator with order of kernel

k = 1 and k = 2 compared with the empirical estimator evaluated at prices p = 2 and w = 2.

Table 1: Bias and RMSE under Each Experiment Design

jBiasj RMSE

n=200 Kernel Kernel Empirical Kernel Kernel Empirical
� k=1 k=2 k=1 k=2

0.25 .018 .019 .021 .024 .024 .027
0.50 .020 .021 .024 .033 .033 .037
0.75 .027 .027 .030 .031 .032 .037
0.99 .132 .261 .084 .175 .358 .095

n=400 Kernel Kernel Empirical Kernel Kernel Empirical
� k=1 k=2 k=1 k=2

0.25 .014 .013 .015 .017 .016 .019
0.50 .015 .012 .017 .018 .016 .019
0.75 .019 .016 .021 .023 .021 .028
0.99 .083 .098 .057 .102 .121 .068

The simulations seem to con�rm our asymptotic results. In particular, the root mean squared error

of all estimators decreases with the sample size, con�rming our asymptotic results. Our smoothed

kernel estimator outperforms the empirical estimator in the cases with � = 0:25; 0:5 and 0:75.

Although we do not use the optimal bandwidth, the performance of the estimator with kernel order

k = 2 is quite good. When the sample size is 200, the performance of estimators with k = 1 and

k = 2 are very close. When the sample size grows from 200 to 400 we observe a larger improvement

for the estimator with k = 2. For example, with � = 0:5, the bias of the estimator with k = 2

decreases from .021 to .012, while the bias of the estimator with k = 1 just decreases from .020 to

.015. We �nd the similar results for all �. This is consistent with the result in Theorem 2 which

states the bias decays faster as k increases.
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We also observe that as � increases, all estimators show larger bias and mean square error. This

can be interpreted as resulting from the fact that there are less e�ective data available as � grows.

As a result, when � is close to 1, pro�t functions of order � become more di�cult to estimate. Note

that the performance of our smoothed estimator is especially poor when � = 0:99. This is most

likely due to the fact that our distribution function has compact support, and it is not smooth near

the boundary. Therefore, the smoothed estimator can generate large biases.

In summary, our simulation results indicate the proposed smooth estimator for the pro�t function

of order � can outperform the empirical estimator in most cases as long as � is not very close to

1. Additionally, increases in the order k of the Mk kernel may increase the convergence speed of

the bias. However, we do not suggest to use our method in approximating the full frontier where

� is approaching to 1. Note that the full frontier is not required in estimating the e�ciency in our

method. According to the analysis in section 2, any � frontier with � 2 (0; 1) can be served as a

standard in the e�ciency analysis.

5 Conclusion and Discussion

In this paper we consider the construction and estimation of a pro�t function of continuous order

� 2 [0; 1]. We de�ne a class of such pro�t functions based on conditional quantiles of an appropriate

distribution of pro�t, input and output prices. We show that they are useful in measuring and

assessing pro�t e�ciency. We show that our estimator is consistent and asymptotically normal

with a parametric convergence speed of
p
n. Furthermore, the bias of our estimator decays to zero

faster than the traditional kernel estimators. A Monte-Carlo simulation is performed to implement

our estimator; investigate its �nite sample performance and compare it to the empirical estimator.

Simulation results seem to con�rm the asymptotic results we have obtained and also seems to

indicate that our proposed estimator can outperform its competitors in most cases. However, our

estimator seems to possess large boundary bias. Decreasing the boundary bias would be a desirable

direction for future work. The choice of optimal bandwidth when k > 1 is another issue to address.

It is also desirable to study the decomposition of technique e�ciency and allocative e�ciency.
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Appendix - Proofs and auxiliary lemmas

Proposition 1 Proof. For any (�; p; w) 2 	�, if � < ��(p; w) = inff� 2 [0; B�] : F (�jCp;w) � �g,
then � =2 f� 2 [0; B�] : F (�jCp;w) � �g. That is, F (�jCp;w) < �. If � > ��(p; w), there exist some

" > 0 such that � > ��(p; w) + ". By the de�nition of ��(p; w), for any " > 0, there exist some

�0 2 f� 2 [0; B�] : F (�jCp;w) � �g such that �0 < ��(p; w) + ". By the strict monotonicity of

F (�jCp;w), F (�jCp;w) > F (��(p; w) + "jCp;w) > F (�0jCp;w) � �. The result then follows.

Proposition 2 Proof. (i) Since f��(p; w)g0���1 is monotone nondecreasing in �, and sup0���1f��(p; w)g =

�(p; w).The result then follows. (ii) Let � be a compact set interior to the support of (P;W ).

De�ne �n(p; w) = �1� 1
n

(p; w). Since f��(p; w)g0���1 is monotone nondecreasing in �, for any

n 2 N, �n(p; w) � �n+1(p; w). From (i), limn!1 �n(p; w) = �(p; w) pointwise. By Dini’s Theorem,

sup(p;w)2� j�n(p; w)��(p; w)j ! 0. Thus, for any " > 0, there exist some N such that when n > N ,

sup(p;w)2� j�n(p; w) � �(p; w)j < ". That is, there exist � = 1 � 1
N such that when j� � 1j < �,

sup(p;w)2� j��(p; w)� �(p; w)j < ".

Proposition 3 Proof. (i) First, note that by de�nition when � = 0 we have F̂ (�jCp;w) = 0. If

0 < �1 � �2, we only need to prove P̂ (�2; p; w) � P̂ (�1; p; w) � 0, since the denominator does not

depend on �. By (5),

P̂ (�2; p; w)� P̂ (�1; p; w) = (nhn)�1
nX
i=1

(

Z �2

0
Mk(

�i � 
hn

)d �
Z �1

0
Mk(

�i � 
hn

)d)I(Pi � p;Wi � w)

� 0

since Mk is a symmetric density. (ii) For any �0 2 [0; B�], let � � �0 < � for some � > 0. Then,

jP̂ (�; p; w)� P̂ (�0; p; w)j = (nhn)�1
nX
i=1

(

Z �

0
Mk(

�i � 
hn

)d �
Z �0

0
Mk(

�i � 
hn

)d)I(Pi � p;Wi � w)

� (nhn)�1
nX
i=1

(

Z �0+�

0
Mk(

�i � 
hn

)d �
Z �0

0
Mk(

�i � 
hn

)d)I(Pi � p;Wi � w)

= (nhn)�1
nX
i=1

(

Z �0+�

�0

Mk(
�i � 
hn

)d)I(Pi � p;Wi � w)

� hn�1� � sup
’2[�BM ;BM ]

Mk(’) < "
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where the last inequality follows for any � > 0, since � can be made as small as desired. (iii) follows

directly from (i) and (ii). For (iv) we need only prove that for any (p; w), there exists some N(p; w)

such that for all n > N(p; w), hn
�1 lim�!1

R �
0 Mk(

�i�
hn

)d



Proof. (a) Since hn ! 0 as n!1, there exist N(p; w) 2 R+ such that for all n > N(p; w),

E(P̂ (�; p; w)) = E[(nhn)�1
nX
i=1

(

Z �

0
Mk(

�i � 
hn

)d)I(Pi � p;Wi � w)]

= hn
�1

Z
Rd1�Rd2

Z 1
�1

Z �

0
Mk(

�� 
hn

)dI(P � p;W � w)f(�; P;W )d�d(P;W )

=

Z
Rd1�Rd2

Z 1
�1

Z ���i
hn

�BM
Mk(’)d’I(P � p;W � w)f(�; P;W )d�d(P;W )

=

Z
Rd1�Rd2

Z 1
�1

�M (
� ��

hn
)I(P � p;W � w)f(�; P;W )d�d(P;W )

Let Ff (�; p; w) =
R �
�1 f(; p; w)d. Using integration by parts,

Z 1
�1

�M (
� ��

hn
)I(P � p;W � w)f(�; P;W )d�

= hn

Z 1
�1

�M (’)I(P � p;W � w)f(� � hn’; P;W )d’

= �
Z 1
�1

�M (’)I(P � p;W � w)dFf (� � hn’; P;W )

= ��M (’)I(P � p;W � w)Ff (� � hn’; P;W )j’=1
’=�1 +

Z 1
�1

Ff (� � hn’; P;W )I(P � p;W � w)d�M (’)

= 0 +

Z 1
�1

Mk(’)Ff (� � hn’; P;W )I(P � p;W � w)d’

= � 1

ck;0

Z 1
�1

kX
jsj=1

ck;s
jsj

K(’=s)Ff (� � hn’; P;W )I(P � p;W � w)d’

= � 1

ck;0

Z 1
�1

K(t)

kX
jsj=1

ck;sFf (� � shnt; P;W )I(P � p;W � w)dt
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Since �
Pk
jsj=1

ck;s
ck;0

= 1,
R1
�1K(t)dt = 1, we have

E(P̂ (�; p; w))� P (�; p; w)

= � 1

ck;0

Z
Rd1�Rd2

Z 1
�1

K(t)

kX
jsj=1

ck;sFf (� � shnt; P;W )I(P � p;W � w)dtd(P;W )

�
Z
Dp;w

Z �

�1
f(; P;W )dd(P;W )

= � 1

ck;0

Z
Rd1�Rd2

Z 1
�1

K(t)
kX
jsj=1

ck;sFf (� � shnt; P;W )I(P � p;W � w)dtd(P;W )

+

kX
jsj=1

ck;s
ck;0

Z
Rd1�Rd2

Z 1
�1

K(t)dtFf (�; P;W )I(P � p;W � w)d(P;W )

= � 1

ck;0

Z
Rd1�Rd2

Z 1
�1

K(t)�2k
hntFf (�; P;W )I(P � p;W � w)dtd(P;W )

By Assumption 5A, we have

jE(P̂ (�; p; w))� P (�; p; w)j � c

Z
Rd1�Rd2

Z 1
�1
jK(t)�2k

hntFf (�; P;W )jI(P � p;W � w)dtd(P;W )

� c

Z
Dp;w

(

Z
jhntj�"2k(�;P;W )

+

Z
jhntj>"2k(�;P;W )

)jK(t)�2k
hntFf (�; P;W )jdtd(P;W )

� c[

Z
Dp;w

Z
jhntj�"2k(�;P;W )

jK(t)j(hnt)2kdtH2k(�; P;W )d(P;W )

+

Z
Dp;w

sup
�2R
jFf (�; P;W )j

Z
jhntj>"2k(�;P;W )

jK(t)jdtd(P;W )]

Since for any N > 0,

Z
jtj>N

jK(t)jdt �
Z
jtj>N

jK(t)jj t
N
j2kdt � N�2k

Z 1
�1
jK(t)jt2kdt

Assume that
R1
�1 jK(t)jt2kdt <1, we have

jE(P̂ (�; p; w))� P (�; p; w)j

� ch2k
n [

Z
Dp;w

H2k(�; P;W )d(P;W ) +

Z
Dp;w

sup
�2R
jFf (�; P;W )j"�2k

2k
j )I(P;W )

=000p;w
H2Ff

2



(b) Note that V (P̂ (�; p; w)) = 1
n(V1n � V2n), where

V1n = E[hn
�2(

Z �

0
Mk(

�� 
hn

)d)2I(Pi � p;Wi � w)]

V2n = (E[h�1
n

Z �

0
Mk(

�� 
hn

)dI(Pi � p;Wi � w)])2

From part (a), we know the limiting behavior of V2n. Now, for V1n since hn ! 0 as n!1, there

exist N(p; w) 2 R+ such that for all n > N(p; w),

V1n = E[hn
�2(

Z �

0
Mk(

�� 
hn

)d)2I(Pi � p;Wi � w)]

= hn
�2

Z
Rd1�Rd2

Z 1
�1

(

Z �

0
Mk(

�� 
hn

)d)2f(�; P;W )I(P � p;W � w)d�d(P;W )

=

Z
Rd1�Rd2

Z 1
�1

(

Z ���
hn

�BM
Mk(’)d’)2f(�; P;W )I(P � p;W � w)d�d(P;W )

=

Z
Rd1�Rd2

Z 1
�1

(�M (
� ��

hn
))2f(�; P;W )I(P � p;W � w)d�d(P;W ):

Integrating by parts

Z 1
�1

(�M (
� ��

hn
))2f(�; P;W )I(P � p;W � w)d�

= hn

Z 1
�1

(�M (’))2f(� � hn )) I (P � p;W � w)d))

1�1(�M ( ’))2
f (P � p;W � w)dk(’ � hn ))



Note that

�M (st) =

Z st

�BM
Mk(v)dv = �

kX
jsj=1

ck;s
ck;0

Z st

�BM

1

jsj
K(

v

s
)dv = �

kX
jsj=1

ck;s
ck;0

Z t

�BK
K(u)du = �(t)

Thus,

V1n = � 2

ck;0

Z
Rd1�Rd2

Z 1
�1

K(t)�(t)

kX
jsj=1

ck;sFf (� � shnt; P;W )I(P � p;W � w)dtd(P;W )

Again, integrating by parts, Z 1
�1

K(t)�(t)dt = 1=2;

since 0 � �(t) � 1,
R1
�1 jK(t)�(t)jt2kdt <1. Similarto the proof in part (a) with K(t)�(t) instead

of K(t),

V1n = P (�; p; w) +R1k(�; p; w; h)

where jR1k(�; p; w; h)j � ch2k
n [
R
Dp;w

H2k(�; P;W )d(P;W )+
R
Dp;w

sup�2R jFf (�; P;W )j"�2k
2k (�; P;W )d(P;W )].

From part (a),

V2n = [E(P̂ (�; p; w))]2

= [P (�; p; w) +R2k(�; p; w; h)]2

where jR2k(�; p; w; h)j � ch2k
n [
R
Dp;w

H2k(�; P;W )d(P;W )+
R
Dp;w

sup�2R jFf (�; P;W )j"�2k
2k (�; P;W )d(P;W )].

As a result,

V (P̂ (�; p; w)) =
1

n
(V1n � V2n)

=
1

n
P (�; p; w)(1� P (�; p; w))� 2

n
P (�; p; w)R2k(�; p; w; h) +

1

n
R1k(�; p; w; h)

� 1

n
R2

2k(�; p; w; h)

where jR1k(�; p; w; h)j and jR2k(�; p; w; h)j are lead than or equal to

ch2k
n [

Z
Dp;w

H2k(�; P;W )d(P;W ) +

Z
Dp;w

sup
�2R
jFf (�; P;W )j"�2k

2k (�; P;W )d(P;W )]:
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Lemma 1 gives the order of the bias and variance as functions of k. Thus as we increase k, the

speed of decay of bias and variance increases. If we assume f has bounded �rst order derivative

with respect to �, by applying Taylor’s Theorem, the next lemma provides a more explicit structure

for bias and variance when k = 1.

Lemma 2. For k = 1, under Assumption 1-4 and Assumption 5B, we have: (a)

E(P̂ (�; p; w)) =

8><>: P (�; p; w) + 1
2h

2
n�

2
M

R
��1((�;�(p;w)]) f

(1)(�; P;W )d(P;W ) + o(h2
n) if 0 < � < �(p; w)

P (�; p; w) + o(h2
n) if � � �(p; w)

(b)

V (P̂ (�; p; w)) =

8>>>><>>>>:
n�1P (�; p; w)(1� P (�; p; w))� 2n�1hn��

R
��1((�;�(p;w)]) f(�; P;W )d(P;W ) + o(hn=n)

if 0 < � < �(p; w)

n�1P (�; p; w)(1� P (�; p; w)) + o(hn=n) if � � �(p; w)

where P (�; p; w) = P(� � �; P � p;W � w) and P̂ (�; p; w) is de�ned in (5). �� =
R BM
�BM Mk()�M ()d.

Proof. (a) Since hn ! 0 as n!1, there exist N(p; w) 2 R+ such that for all n > N(p; w),

E(P̂ (�; p; w)) = E[(nhn)�1
nX
i=1

(

Z �

0
Mk(

�i � 
hn

)d)I(Pi � p;Wi � w)]

= hn
�1

Z
Rd1�Rd2

Z 1
�1

Z �

0
Mk(

�� 
hn

)dI(P � p;W � w)f(�; P;W )d�d(P;W )

= hn
�1

Z
Dp;w

Z
[0;�(P;W )]

Z �

0
Mk(

�� 
hn

)df(�; P;W )d�d(P;W )

=

Z
Dp;w

Z
[0;�(P;W )]

Z ���i
hn

�BM
Mk(’)d’f(�; P;W )d�d(P;W )

=

Z
Dp;w

Z
[0;�(P;W )]

�M (
� ��

hn
)f(�; P;W )d�d(P;W ):

We consider 3 cases: (1) 0 < � < �(p; w); (2) � > �(p; w); (3) � = �(p; w).
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For case (1),

E(P̂ (�; p; w)) =

Z
Dp;w

Z
[0;�(P;W )]

�M (
� ��

hn
)f(�; P;W )d�d(P;W )

=

Z
��1([0;�(p;w)])

Z
[0;�(P;W )]

�M (
� ��

hn
)f(�; P;W )d�d(P;W )

=

Z
��1([0;�)[(�;�(p;w)])

Z
[0;�(P;W )]

�M (
� ��

hn
)f(�; P;W )d�d(P;W )

+

Z
��1(f�g)

Z
[0;�]

�M (
� ��

hn
)f(�; P;W )d�d(P;W )

= A1n +A2n:

Note that for the last term, for � < �, �M (���
hn

) ! 1 as n ! 1. By Assumptions 2 and 4,

j�M (���
hn
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Z
[0
� ��

n
f (�; P;W )d�d(P;W )

=

Z ;20774200;�) g)

Z
[0 )j<1



By Taylor’s theorem, Ff (� � hn; P;W ) = Ff (�; P;W ) � hnf(�; P;W ) + 1
2h

2
n

2f (1)(�; P;W ) +

o(h2
n), Hence

A1n = E1n + E2n + E3n + E4n + o(h2
n)

where

E1n =

Z
��1([0;�)[(�;�(p;w)])

�M (
� � �(P;W )

hn
)Ff (�(P;W ); P;W )d(P;W )

E2n =

Z
��1([0;�)[(�;�(p;w)])

Ff (�; P;W )

Z �
hn

���(P;W )
hn

Mk()dd(P;W )

E3n = hn

Z
��1([0;�)[(�;�(p;w)])

f(�; P;W )

Z �
hn

���(P;W )
hn

Mk()dd(P;W )

E4n =
1

2
h2
n

Z
��1([0;�)[(�;�(p;w)])

f (1)(�; P;W )

Z �
hn

���(P;W )
hn

Mk()2dd(P;W )

Now,

E1n =

Z
��1([0;�)[(�;�(p;w)])

�M (
� � �(P;W )

hn
)Ff (�(P;W ); P;W )d(P;W )

=

Z
��1([0;�))

�M (
� � �(P;W )

hn
)Ff (�(P;W ); P;W )d(P;W )

+

Z
��1((�;�(p;w)])

�M (
� � �(P;W )

hn
)Ff (�(P;W ); P;W )d(P;W )

= E11;n + E12;n

For E11;n, note that when (P;W ) 2 ��1([0; �)), ���(P;W )
hn

! +1 and �M (���(P;W )
hn

) ! 1 as

n ! 1. By assumption 2 and assumption 3, j�M (���(P;W )
hn

)Ff (�(P;W ); P;W )j < 1. Thus by

Lebesgue’s dominated convergence theorem we have

E11;n !
Z
��1([0;�])

Ff (�(P;W ); P;W )d(P;W ) =

Z
��1([0;�])

Z
[0;�(P;W )]

f(�; P;W )d�d(P;W ):

For E12;n, note that when (P;W ) 2 ��1((�; �(p; w)]), ���(P;W )
hn

! �1 and �M (���(P;W )
hn

)! 0 as
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n!1. As a result, E1n !
R
��1([0;�)[(�;�(p;w)])

R
[0;�(P;W )] f(�; P;W )d�d(P;W ).

E2n =

Z
��1([0;�)[(�;�(p;w)])

Ff (�; P;W )

Z �
hn

���(P;W )
hn

Mk()dd(P;W )

=

Z
��1([0;�))

Ff (�; P;W )

Z �
hn

���(P;W )
hn

Mk()dd(P;W )

+

Z
��1((�;�(p;w)])

Ff (�; P;W )

Z �
hn

���(P;W )
hn

Mk()dd(P;W )

= E21;n + E22;n

For E21;n, when (P;W ) 2 ��1([0; �)), ���(P;W )
hn

! +1 and
R �
hn
���(P;W )

hn

Mk()d ! 0 as n!1. For

E22;n, when (P;W ) 2 ��1((�; �(p; w)]), ���(P;W )
hn

! �1 and
R �
hn
���(P;W )

hn

Mk()d ! 1 as n ! 1.

As a result, E2n !
R
��1([0;�)[(�;�(p;w)])

R
[0;�] f(�; P;W )d�d(P;W ).

h�1
n E3n =

Z
��1([0;�)[(�;�(p;w)])

f(�; P;W )

Z �
hn

���(P;W )
hn

Mk()dd



Similarly, when (P;W ) 2 ��1([0; �)), ���(P;W )
hn

! +1 and E41;n ! 0 as n!1. When (P;W ) 2

��1((�; �(p; w)]), ���(P;W )
hn

! �1 and
R �
hn
���(P;W )

hn

Mk()2d ! �2
M as n ! 1 by the symmetry

of Mk(:). As a result, h�2
n E4n ! 1

2�
2
M

R
��1((�;�(p;w)]) f

(1)(�; P;W )d(P;W ). Therefore, if 0 < � <

�(p; w),

E(P̂ (�; p; w)) = E1n + E2n + E3n + E4n +A2n + o(h2
n)

=

Z
��1([0;�))

Z
[0;�]9 2]TJ/F32 7.9701 Tf 3.2910.9091 Tf 10.9 [(2)]TJ/F32 7.9701 Tf 0 -7.201 Td [(n)]TJ/F15 10.9091 Tf 5.637 2.697 Td [())]TJ -196.313 -20.922 Td [(=)]TJ0(1))=n



(b) Note that V (P̂ (�; p; w)) = 1
n(V1n � V2n), where

V1n = E[hn
�2(

Z �

0
Mk(

�� 
hn

)d)2I(Pi � p;Wi � w)]

V2n = (E[h�1
n

Z �

0
Mk(

�� 
hn

)dI(Pi � p;Wi � w)])2

From part (a), we know the limiting behavior of V2n, now for V1n, Since hn ! 0 as n ! 1, there

exist N(p; w) 2 R+ such that for all n > N(p; w),

V1n = E[hn
�2(

Z �

0
Mk(

�� 
hn

)d)2I(Pi � p;Wi � w)]

= hn
�2

Z
Dp;w

Z
[0;�(P;W )]

(

Z �

0
Mk(

�� 
hn

)d)2f(�; P;W )d�d(P;W )

=

Z
Dp;w

Z
[0;�(P;W )]

(

Z ���
hn

�BM
Mk(’)d’)2f(�; P;W )d�d(P;W )

=

Z
Dp;w

Z
[0;�(P;W )]

(�M (
� ��

hn
))2f(�; P;W )d�d(P;W )

Like part (a), we also consider 3 cases when (1) 0 < � < �(p; w); (2) � > �(p; w); (3) � = �(p; w).

For case (1),

V1n =

Z
��1([0;�)[(�;�(p;w)])

Z
[0;�(P;W )]

(�M



where Ff (�; P;W ) =
R �

0 f(; p; w)d. Using integration by parts,

Z
[0;�(P;W )]

(�M (
� ��

hn
))2@Ff (�; P;W )

@�
d�

=

Z
[0;�(P;W )]

(�M (
� ��

hn
))2dFf (�; P;W )

= (�M (
� ��

hn
))2dFf (�; P;W )j�=�(P;W )

�=0 �
Z

[0;�(P;W )]
Ff (�; P;W )d(�M (

� ��

hn
))2

= (�M (
� � �(P;W )

hn
))2Ff (�(P;W ); P;W ) +

2

hn

Z
[0;�(P;W )]

Ff (�; P;W )�M (
� ��

hn
)Mk(

� ��

hn
)d�

= (�M (
� � �(P;W )

hn
))2Ff (�(P;W ); P;W ) + 2

Z �
hn

���(P;W )
hn

Ff (� � hn; P;W )�M ()Mk()d

By Taylor’s s71 Tf -431.923 -40.923 Td [(By)-333(T)83(a)28(ylor’s)-34.e0.90or34.e0.90m, 6.286 -1.636 Td [(n)]3 -716 10J/F32 7.9701 Tf 6.285 -1.636 .436 w. [())]TJ
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Now,

Z BM

�BM
Mk()�M ()d =

Z BM

�BM
�M ()d�M ()

= �M ()2jBM�BM �
Z BM

�BM
�M ()d�M ()

= 1�
Z BM

�BM
�M ()d�M ()

As a result,
R BM
�BM Mk()�M ()d = 1=2. Therefore,

V12n !
Z
��1((�;�(p;w)])

Z
[0;�]

f(�; P;W )d�d(P;W )

Similarly,

V13n ! 2hn��

Z
��1((�;�(p;w)])

f(�; P;W )d�d(P;W )

The result then follows. Case (2) and (3) follow similarly.

Lemma 3. Let hn be a sequence of nonstochastic bandwidths such that 0 < hn ! 0 as n !
1. Given w-m
[6
/F52 1+TJ -457.091 -17.933 T4d�1(



Then

P̂ (�; p; w) = (nhn)�1
nX
i=1

(

Z �

0
Mk(

�i � 
hn

)d)I(Pi � p;Wi � w)

= hn
�1

Z �

0
Mk(

�� 
hn

)dI(Pi � p;Wi � w)

= hn
�1

Z ���i
hn

� �i
hn

Mk(’)d’I(Pi � p;Wi � w)

= hn
�1

Z ���i
hn

�BM
Mk(’)d’I(Pi � p;Wi � w)

= hn
�1�M (

� ��i

hn
)I(Pi � p;Wi � w)

Since [0



For � 2 B(�l; (
n
han

)�
1
2 ), we have

P1n = jP̂ (�; p; w)� P̂ (�l; p; w)j

� hn
�1

nX
i=1

j�M (
� ��i

hn
)� �M (

�l ��i

hn
)jI(Pi � p;Wi � w)

� hn
�1



Write jP̂ (�l; p; w)� E(P̂ (�l; p; w))j = j 1n
Pn

i=1Winj where

Win = �M (
�l ��i

hn
)I(Pi � p;Wi � w)� E[�M (

�l ��i

hn
)I(Pi � p;Wi � w)]

Obviously, E(Win) = 0, jWinj � 2 since both I(:) and �M (:) are less or equal to one. By Bernstein’s

inequality we have

Pf( n

ln(n)
)

1
2 jP̂ (�l; p; w)� E(P̂ (�l; p; w))j � �"g < 2 exp(�

n�2
" � ( n

ln(n))�1

2��2
n + 4

3�" � ( n
ln(n))�

1
2

)

with ��2
n = n�1

Pn
i=1 V (Win) ! P (�l; p; w)(1 � P (�l; p; w)) by Lemma 1 or 2. Thus 2��2

n + 4
3�" �

( n
ln(n))�

1
2 ! 2P (�l; p; w)(1� P (�l; p; w)), Hence provided that �2

" > 2P (�l; p; w)(1� P (�l; p; w)),

P2n � LnPf(
n

ln(n)
)

1
2 jP̂ (�l; p; w)� E(P̂ (�l; p; w))j � �"g

< r�(
n

hn
)

1
2 � 2 exp(� ln(n)) = r�(nh)�

1
2

Therefore, P2n = op(1) and as a result, sup�2[0;�(p;w)] jP̂ (�; p; w)� E(P̂ (�; p; w))j = op(1).

(b) Note that for � 2 [0; �(p; w)],

E(P̂ (�; p; w) =

Z
Dp;w

Z
[0;�(P;W )]

�M (
� ��

hn
)f(�; P;W )d�d(P;W )

=

Z
��1([0;�))

Z
[0;�(P;W )]

�M (
� ��

hn
)f(�; P;W )d�d(P;W



where

G1n = j
Z
��1([0;�))

Z
[0;�(P;W )]

�M (
� ��

hn
)f(�; P;W )d�d(P;W )�

Z
��1([0;�))

Z
[0;�(P;W )]

f(�; P;W )d�d(P;W )j

G2n = j
Z
��1(f�g)

Z
[0;�(P;W )]

�M (
� ��

hn
)f(�; P;W )d�d(P;W )�

Z
��1(f�g)

Z
[0;�(P;W )]

f(�; P;W )d�d(P;W )j

G3n = j
Z
��1((�;�(p;w)])

Z
[0;�]

�M (
� ��

hn
)f(�; P;W )d�d(P;W )�

Z
��1((�;�(p;w)])

Z
[0;�]

f(�; P;W )d�d(P;W )j

G4n = j
Z
��1((�;�(p;w)])

Z
[�;�(P;W )]

�M (
� ��

hn
)f(�; P;W )d�d(P;W )j

For the �rst term, when (P;W ) 2 ��1([0; �)), � � �(P;W ) < �. This implies �M (���
hn

) ! 1 as

n!1. First, by LDC,

Z
��1([0;�))

Z
[0;�(P;W )]

�M (
� ��

hn
)f(�; P;W )d�d(P;W )!

Z
��1([0;�))

Z
[0;�(P;W )]

f(�; P;W )d�d(P;W ):

Second,
R
��1([0;�))

R
[0;�(P;W )] �M (���

hn
)f(�; P;W )d�d(P;W ) is increasing with n. Furthermore, By

the Lipschitz condition imposed on �M (:),R
��1([0;�))

R
[0;�(P;W )] �M (���

hn
)f(�; P;W )d�d(P;W ) is a continuous function in �. As a result, by

Dini’s Theorem,

Z
��1([0;�))

Z
[0;�(P;W )]

�M (
� ��

hn
)f(�; P;W )d�d(P;W )!

Z
��1([0;�))

Z
[0;�(P;W )]

f(�; P;W )d�d(P;W )

uniformly. Thus, sup�2[0;�(p;w)]G1n = o(1). Similarly, we can prove that sup�2[0;�(p;w)]G2n = o(1)

and sup�2[0;�(p;w)]G3n = o(1). For the last term, note when � 2 [�; �(P;W )], �M (���
hn

) ! 0

Similarly, by LDC and Dini’s theorem, sup�2[0;�(p;w)]G4n = o(1).

Theorem 1 Proof. First we consider the event set A = f! : j��;n(p; w) � ��(p; w)j > "g.
Given (p; w), provided that ��(p; w) is unique, for any " > 0, we have F (��(p; w) + "jCp;w) >

F (��(p; w)jCp;w) > F (��(p; w) � "jCp;w). For ! 2 A = f! : j��;n(p; w) � ��(p; w)j > "g,
��;n(p; w) > ��(p; w)+" or ��;n(p; w) < ��(p; w)�". By the monotonicity of F (:jCp;w), F (��;n(p; w)jCp;w) �
F (��(p; w) + "jCp;w) or F (��;n(p; w)jCp;w) � F (��(p; w)� "jCp;w). Let

�("; p; w) = minfF (��(p; w)+"jCp;w)�F (��(p; w)jCp;w); F (��(p; w)jCp;w)�F (��(p; w)�"jCp;w)g > 0
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Theorem 2 Proof. (i) By Mean Value Theorem,

��;n(p; w)� ��(p; w) =
F̂ (��;n(p; w)jCp;w)� F̂ (��(p; w)jCp;w)

f̂(���;n(p; w)jCp;w)

=
F (��(p; w)jCp;w)� F̂ (��(p; w)jCp;w)

f̂(���;n(p; w) p;w)



G is a compact set and G � (0; �(p; w)).

Note that f(�jCp;w) =

R
��1((�;�(p;w)]) f(�;P;W )d(P;W )

PPW (p;w) since when (P;W ) 2 ��1([0; �]), � � �(P;W ) �
�. F (�jCp;w) = 1 and

@F (�jCp;w)
@� = 0

sup
�2G
jf̂(�jCp;w)� f(�jCp;w)j

= sup
�2G
j
(nhn)�1

Pn
i=1Mk(

�i��
hn

)I(Pi � p;Wi � w)

P̂PW (p; w)
�

R
��1((�;�(p;w)]) f(�; P;W )d(P;W )

PPW (p; w)
j

� 1

P̂PW (p; w)
sup
�2G
j(nhn)�1

nX
i=1

Mk(
�i � �
hn

)I(Pi � p;Wi � w)�
Z
��1((�;�(p;w)])

f(�; P;W )d(P;W )j

+j 1

PPW (p; w)
� 1

P̂PW (p; w)
j sup
�2G

Z
��1((�;�(p;w)])

f(�; P;W )d(P;W )

Since 1
PPW (p;w) �

1
P̂PW (p;w)

= op(1) by Slutsky theorem,

sup
�2G

Z
��1((�;�(p;w)])

f(�; P;W )d(P;W ) � Bf
Z
��1((�;�(p;w)])

d(P;W ) = O(1)

by Assumptions 3 and 4.

Denote Qn(p; w) = (nhn)�1
Pn

i=1Mk(
�i��
hn

)I(Pi � p;Wi � w), Thus,

sup
�2G
jQn(p; w)�

Z
��1((�;�(p;w)])

f(�; P;W )d(P;W )j

� sup
�2G
jQn(p; w)� E(Qn(p; w))j

+ sup
�2G
jE(Qn(p; w))�

Z
Dp;w

�M (
�(P;W )� �

hn
)f(�; P;W )d(P;W )j

+ sup
�2G
j
Z
��1((�;�(p;w)])

�M (
�(P;W )� �

hn
)f(�; P;W )d(P;W )�

Z
��1((�;�(p;w)])

f(�; P;W )d(P;W )j



nh2
n !1. For any (p; w



(b):

An = F (��(p; w)jCp;w)� E(P̂ (��(p; w); p; w))

E(P̂PW (p; w))

=
E(P̂PW (p; w))F (��(p; w)jCp;w)

E(P̂PW (p; w))
� P (��(p; w); p; w)

E(P̂PW (p; w))

+
P (��(p; w); p; w)

E(P̂PW (p; w))
� E(P̂ (��(p; w); p; w))

E(P̂PW (p; w))

=
1

E(P̂PW (p; w))
[(E(P̂PW (p; w))F (��(p; w)jCp;w)� P (��(p; w); p; w))

+(P (��(p; w); p; w)� E(P̂ (��(p; w); p; w)))]

=
1

E(P̂PW (p; w))
(A1n +A2n)

we know E(P̂PW (p; w)) = PPW (p; w). A1n = 0. Since given � 2 (0; 1), ��(p; w) 2 (0; �(p; w)), by

Lemma 2,

A2n = �1

2
h2
n�

2
M

Z
��1((��(p;w);�(p;w)])

f (1)(��(p; w); P;W )d(P;W ) + o(h2
n)

The result then follows.

(c):

p
nCn =

p
n(
E(P̂ (��(p; w); p; w))

E(P̂PW (p; w))
� F̂ (��(p; w)jCp;w))

=
p
n(
E(P̂ (��(p; w); p; w))P̂PW (p; w)

E(P̂PW (p; w))P̂PW (p; w)
� P̂ (��(p; w); p; w)

P̂PW (p; w)
)

=
1

P̂PW (p; w)

nX
i=1

Zin

where

Zin =
1p
n

(
E(P̂ (��(p; w); p; w))

PPW (p; w)
I(Pi � p;Wi � w)� 1

hn

Z ��(p;w)

0
Mk(

�i � 
hn

)dI(Pi � p;Wi � w))
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Here,

E(Zin) =
1p
n

(E(P̂ (��(p; w); p; w))� E(P̂ (��(p; w); p; w)))

= 0

nX
i=1

E(



nX
i=1

E(Z2
in) = s1n + s2n + s3n

= P (��(p; w); p; w)� (P (��(p; w); p; w))2

PPW (p; w)

�2hn��

Z
��1((��(p;w);�(p;w)])

f(��(p; w); P;W )d(P;W ) + o(hn)

By Liapounov’s CLT,
Pn

i=1
Zin

sn(p;w)

d! N(0; 1) if limn!1
Pn

i=1E(j Zin
sn(p;w) j

2+�) = 0 for some � > 0.

nX
i=1

E(j Zin
sn(p; w)

j2+�) �
nX
i=1

E(jZinj2+�j 1

sn(p; w)
j2+�)

Since sn(p; w) = O(1), we just need to prove limn!1
Pn

i=1E(jZinj2+�) = 0. By Cr Inequality,

nX
i=1

E(jZinj2+�) � 21+�(n�2=�E(jE(P̂ (��(p; w); p; w))

PPW (p; w)
I(Pi � p;Wi � w)j2+�)

+ n�2=�E(j 1

hn

Z ��(p;w)

0
Mk(

�i � 
hn

)dI(Pi � p;Wi � w)j2+�))

= 21+�(n�2=�EjE(P̂ (��(p; w); p; w))

PPW (p; w)
j2+�E(I(Pi � p;Wi � w)))

+n�2=�

Z
Dp;w

Z
[0;�(P;W )]

�M (
��(p; w)��

hn
)f(�; P;W )d�d(P;W )

Since E(I(Pi � p;Wi � w) = O(1),

n�2=�EjE(P̂ (��(p; w); p; w))

PPW (p; w)
j2+� = n�2=� jE(P̂ (��(p; w); p; w))j2+�

PPW (p; w)2+�

= O(n�2=�)

Since �M (:) � 1, f < Bf and � � B�,

n�2=�

Z
Dp;w

Z
[0;�(P;W )]

�M (
��(p; w)��

hn
)f(�; P;W )d�d(P;W )

� n�2=�Bf

Z
Dp;w

Z
[0;�(P;W )]

d�d(P;W )

� n�2=�Bf

Z
��1[0;B� ] f



The result then follows.

(ii) Note that in the proof of part (i), An = 1
E(P̂PW (p;w))

(A1n +A2n) is the bias term and A1n = 0.

by Lemma 1,

jA2nj = jP (��(p; w); p; w)� E(P̂ (��(p; w); p; w))j

� ch2k
n [

Z
Dp;w

H2k(��(p; w); P;W )d(P;W ) +

Z
Dp;w

sup
�2R
jFf (�; P;W )j"�2k

2k (��(p; w); P;W )d(P;W )]

The result then follows.
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