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Abstract

Policy makers depend on economists, statisticians, and other social scientists to make ac-
curate observations and draw solid conclusions from quantitative analysis. Econometrics, for
example, has come a long way in the past century and guides many decisions made today. On
the other hand, some statistical procedures have not had signi�cant advances, but are instead
applied and their original assumptions are forgotten. The appropriateness of many of these
measurements has come into question, and while criticism is often accepted, little is done to
correct them. In reality, there is a proli�c measurement problem being committed everyday.
This problem involves the use of statistical distance metrics to measure social phenomena. For
example, measurements which would routinely be used to answer questions like: by how much
have the imports of the United States changed in the past year? By how much has racial diver-
sity changed in the past decade? Does greater ethno-linguistic diversity lead to civil con�ict?
These and similar questions rely on accurate multi-variate distance metrics. However all dis-
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�Many multivariate statistical methods can be regarded as techniques for investigating a sample space

in which each sample member is represented by a point.� John C. Gower (1967), pg 13.

�Measurement is a big part of mobilizing for impact. You set a goal, and then you use data to make

sure you're making progress toward it. This is crucial in business-and it's just as important in the

�ght against poverty and disease� Bill H. Gates (2013), pg 52.

1 Introduction: The Problem

Before introducing any formal mathematics, consider the �ve following measurement puzzles:

Puzzle 1 : Consider a two-country world where Country C exports half corn and half corn meal.

Country D exports half corn and half computers. Which one has the most diverse exports? Mea-

sures of export diversi�cation indicate that both countries are exactly equally diverse.

Puzzle 2 : In City A exactly 5 percent of the labor force are Economics Professors. In City B, ex-

actly 5 percent of the labor force are Research Economists. The Location Quotient doesn't recognize

cross-discipline similarities, so between the two cities, City A is classi�ed as being relatively sparse

in Research Economists and City B is classi�ed as being relatively dense in Research Economists.

Puzzle 3 :







still maintaining the original structure of the data. That procedure is the subject of this paper and

is detailed in the Methodology section.

How big is this problem and the corresponding bias? That depends on the data, but a rough

estimate is given by �nding the average value of the data's similarity matrix, where �i;j is the (i; j)

of a similarity matrix �:

bias =

nX
i=1

nX
j=1

�i;j � n

n2 � n
(1)

Using 4-digit SITC international trade data for the year 2000, this number is 481801:6�772
7722�772

= 0:808. In

other words, the average export product xi is, on average 80.8 percent like product xj . However, all

current distance metrics, and hence all standard trade metrics, implicitly assume that similarity is

zero between all categories. This is clearly not true, and without zero similarity between categories,

the standard multi-dimensional metrics are not valid.

The question naturally arises: how wide-spread is the problem? Well it exists in every branch of



procedure and so may be unable to use this procedure until a similarity-calculating procedure is

found. This would be an ideal subject for future research.

To preview the proposed orthogonalization procedure, one can see it as a change of coordinate

systems. I take as given a set of data vectors and the measure of similarity between every pair of

its dimensions. The basic idea is that the similarity between dimensions can increase which reduces

distance between individual dimensions in a vector. This is best seen in the spherical coordinate

system (see Spiegel 1959, Munkres 1991). The measure of the angle from the vector to an axis is

given by � or �. the orthogonalization procedure then uses the change of coordinates to �nd the

length of this vector along each axis. The rectangular coordinate system is what most empirical

measures are based upon, at least those with concepts like angle and distance. So in order for a

quantitiative measure to be valid, we must change the coordinate system to what the measure is

assuming. This is the basic idea of the paper.

2 Literature

The aforementioned problem of heterogeneity between dimensions is, as far this author can tell,

completely unacknowledged when working with shares data. That said, the problem is recognized

when working with quantitative variables which are not in the form of shares, and has been the

focus of substantial research. I can identify 9 distinct orthogonalization procedures each of which

are based on two basic methods, of which there are undoubtedly more. The �rst method, found

overwhelming in Statisitics and Econometrics, involves the use of a correlation or covariance matrix

to �nd orthogonal dimensions. The second method, found in Mathematics and applied in Computer

Science and Physics, involves knowing exactly how the system behaves in a non-stochastic fashion

and having perfect measurements.

Two ideas distinguish my problem and solution from the rest of the literature. The �rst is that

the data which I am examing always exists on a unit simplex. Thus the range of possible values

that variables may take is relatively limited, and no negative values are allowed. This eliminates

the use of correlation and covariance matrices since these procedures commonly produce negative
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values. Secondly, my over-arching argument rests on the idea that the true coordinates of these

observations are not known, but detailed information exists in the form of similarity values which

can be used to �nd the true location.



idea behind principal coordinates is that it takes a distance measure between all pairs of observations

and gives them coordinates; according to Gower (1967, pg.19), �We can ask how the coordinates of

points with the given distances be found.�. On the other hand, the orthogonalization method that I

discuss in this paper adjusts for a similarity measure between variables. The idea of this adjustment

between variables is that, afterward, similarity between observations (or other measures) can be

measured, based on the adjusted variables. Consider that principle coordinates analysis takes a

matrix of similarities between observations as given, and then adjusts the variables to �t those

similarities. In contrast, the orthogonalization procedure described herein is quite the opposite

in that it seeks to create a similarity matrix between observations based on the given similarity

between the variables.

Third, and also similar to principal components analysis, is factor analysis. In factor analysis a

researcher attempts to identify unobserved, latent categorical variables. In this case the covariance

between dimensions leads to recognition of a previously unidenti�ed latent variable. So this statis-



exports.

Fifth, regression analysis and analysis of variance, are chie�y concerned with accounting for

covariance. Each variable is treated as a dimension, and the covariance between dimensions can

greatly a�ect the estimate of the mean value of a regressor on the regressand. In an abstract way

this is similar because the practitioner realizes that variables are not completely independent of one

another, and so the covariance, or angle between dimensions, is included in the process by design.

Not including important covariates leads to omitted variable bias: the magnitude of a parameter is

inaccurate. This is geometrically equivalent to a parameter value being projected onto an n-plane

but not parallel to its coordinate axis, with the angle between its proposed axis and the actual

projection proportional to the correlation with the omitted variable. This is exactly the argument

that I am making for distance measures.

2.2 Exact Methods of Orthogonalization

The second class of orthogonalizatin procedures is based on mathematical procedures for rotation,

have no stochastic assumption, and the underlying data generating process has no latent variables.

The ever-present implicit assumption that I am trying to upend here is that n-space coordinates are

always known. For this reason the Gram-Schmidt process, the Householder Transformation, and

the Givens Rotation can all be ruled out as potential orthogonalization techniques because they all

make this assumption. I am not going to detail each method, because none of them can work due

to this assumption. Again, each assumes that the coordinates of a vector are known, whereas I only

assume partial information about the coordinates is known.

2.3 Other Literature

Sixth, this paper has ties to Measure Theory. A main point of measure theory concerns distinguish-

ing a measurement of an attribute from the attribute itself. Consider common commodities like

wheat, corn, and computers. How di�erent are these things? As economists, we don't particularly

care about wheat, corn, or computers in themselves, but rather about the implied underlying pro-



able to measure is not necessarily the same as what we need to measure to form general theoretical

statements.

Seventh, this paper closely relates to Index Number Theory, however, this paper has nothing

direct to say about prices. In Index Number Theory, one can typically identify two distinct ap-

proaches: the Axiomatic Approach versus the Economic Approach. What is the point to having

these two di�erent approaches? The point is that the data does not line up exactly with theory be-



3 Methodology

The problem, stated in yet another way, is that the categories in which much data is classi�ed

is ad hoc, with some categories more alike than others. To �x this problem, one �rst needs a

measure of similarity between all dimensions, to which I will defer to other papers. For example

in International Trade see Hidalgo, et al (2007) or for a more general treatment see Dauxois and

Nkiet (2002). Second, accoding to Gentle (2007), this similarity data is best viewed as representing

the angle between dimensions. With this in mind, the orthogonalization procedure is then to take

each data share xc;i and project it onto an orthogonal coordinate system, Euclidean n-space. Then

one can apply any number of distance metrics. This projection is best viewed as a change from

hyperspherical 3 to rectangular coordinates for each individual dimension.

3.1 Similarity Matrices and Angle Between Dimensions



of vectors: �The cosine of the angle between two vectors is related to the correlation between the

vectors, so a matrix of the cosine of the angle between the columns of a given matrix would also be



between the z-axis and the x-y plane, in radians. Let � be the angle between the x-axis and the

z-y plane. Then given the values for spherical coordinates (r; �; �), the corresponding rectangular

coordinates (x1; y1; z1) can be found by:

x = r sin � cos� (3)

y = r sin � sin� (4)

z = r cos � (5)

The above equations are a projection of a vector in spherical coordinates into the rectangular

coordinate system. These should be familiar to the reader and are typically �rst encountered in

multvariate Calculus.

3.3 The Orthogonalization Procedure: Change of Coordinates

The most promising method to obtain an orthogonal coordinate system is to use a change from

hyperspherical to rectangular coordinates. I use the algorithm described in Lin (1995) 4. The basic

idea here is to treat each dimension of a vector as its own vector. Then, because the angle of each

dimension is known in regards to every other dimension, and using a trigonometric-based algorithm,

one can project the length of the vector onto each dimension, repeat for each entry in the vector,

and sum them up at the end.

De�ne a vector of shares data by x which has n rows indexed by i. The associated n by n

similarity matrix is �, with elements �i;j where rows are indexed by i and columns indexed by j.

Rede�ne � in terms of degrees and convert it from a similarity matrix to a distance matrix:

d�i;j = (1� �i;j)90 (6)

For every i, de�ne each entry in the vector xi as a radius. De�ne each column entry j in row i of

matrix � as the angle formed by the vector i to dimension j. To convert to rectangular coordinates,

4I thank Professor Jeanne Du�ot for providing me with an equivalent algorithm.
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align the numeraire good as the �rst good. This represents a simple rotation of the coordinate

system 5.

dx1;i = x1 cos(�1;1) (7)

Now, similarly, �nd the projection of the second good onto each axis. Do this for each of the n

goods using the following algorithm.

dx2;i = x1 cos�1;i

dx3;i = x1 sin�1;i cos�2;i

dx4;i = x1 sin�1;i sin�2;i cos�3;i

� � �

\xn�2;i = r sin�1;i sin�2;i sin�3;i � � � sin�n�3;i cos�n�2;i

\xn�1;i = r sin�1;i sin�2;i sin�3;i � � � sin�n�2;i cos�n�1;i

dxn;i = r sin�1;i sin�2;i sin�3;i � � � sin�n�1;i sin�n;i

(8)

The previous algorithm is adapted from Lin (1995).6 Note that the pattern of the hyperspherical

algorithm is such that the vast majority of terms are sine and each line ends with cosine except for

the very last line which ends in sine.

Repeat the above producedure for all i and then de�ne for all j:

bxj =



And �nally, because this is shares data and exists on a unit simplex, the sum of the entries must

add to 1. De�ne total unadjusted shares (TUS)as:

TUS =

nX
j=1

bxj (11)

And normalize each entry using TUS:

cxa
i =

bxi

TUS
(12)

The above equations outline the orthogonalization procedure for a single data vector. Likely

a researcher would be comparing many di�erent data vectors and would need to complete this

procedure for each vector. This is the end of the orthogonalization procedure.

3.4 Distance Metrics

The following is an introduction to a subset of common distance metrics used in many di�erent

statistical and social science �elds. Many more distance metrics exist, and as with the literature

review, this list is by no means exhaustive. In various �elds these distance metrics go by speci�c



Where only the positive root is used. When p = 1, the distance metric is known as either Manhattan,

or City-Block Distance:

DManhattan =

nX
i=1

jxc;i � xd;ij (14)

City-block distance gets its name from the fact that to get from one point to another in a city

grid one must follow the streets. Particularly in Manhattan, streets intersect at right angles, so the



4 Simulation

My above qualitative argument for the need for an orthogonalization procedure is hopefully persua-

sive. However, I �nd it useful to present a very general example using a series of simple simulations.

I will consider a three-dimensional world where a single observation xi is composed of k share at-

tributes, where the sum of k attributes is one. Using a random number generator, I will assign

values to the k attributes as well as to the k2

2 � k similarity between attributes. This is equivalent

to �nding a random point in a random k-space. I will then calculate the Euclidean distance to

the origin �rst ignoring the similarities, and then compare this to the Euclidean distance using the

orthogonalization procedure. I repeat this for varying values of n and k, with the results displayed

in Figures 2 and 1. Here the number of observations are n = 1; 2; :::120 7 which are plotted along the

x-axis, and the number of dimensions is k = 2; 3; :::; 160, 8 plotted along the y-axis. The z-axis (ver-

tical) represents the measured distance on k dimensions between a point and the origin, averaged

for n observations. Figure 2 ignores the similarity between dimensions and computes Euclidean

distance in the normal way. Compare these average values to those in Figure 1 which do take into

account the similarity between dimensions and thus compute the true average distances. Figure 3

plots the simple di�erence between the two surfaces.

By de�nition, the distances using the Law of Cosines are correct, it is the Euclidean distances,



Figure 1: Actual Distance Using the Law of Cosines

pletely invariant to the number of observations, and are completely dependent on the number of

dimensions used. So these measures depend more on the number of dimensions used rather than

the actual values in the shares data.

5 Applications

The following section outlines a few examples in the literature where the orthgonalization method

can potentially yield great bene�t. I plan to academically pursue these topics in the near future. I

have drafted or am working on proposals on all of the following topics.

5.1 Application: Price Indices

The computation of index numbers su�ers from three primary challenges. The �rst is that the data

is in the form of categories, which naturally do not obey the laws of arithmetic. The second is

that the weights of categories change over time. These �rst two challenges are commonly referred

to as the �Index Number Problem.� The third is that classi�cation and categorical ambiguity
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Figure 2: Estimate Using Euclidean Distance



Figure 3: Di�erence Between Actual and Estimated

egorizing people as red, yellow, brown, black, and white (Funderburg 2013, 83). The simplicity

of this categorization has, quite understandably, been contentiously opposed. The o�ense is likely

not so much in the names used, as it is in the broadness of each category. When being given a

label, most individuals would likely want to be recognized as closely as possible to the category in

which they self-identify. To this end, a researcher may feel compelled to divide the categories into

smaller subcategories. The only problem is that the index monotonically increases with the number

of categories. While it's possible that this measure is correct at any aggregation level, the point is

that it's not clear which level of aggregation is appropriate. In particular, think about multi-racial

people. In computing the IQV, most researchers treat a bi- or multi-racial person as being in a

completely di�erent category. However, a multi-racial person is really, by de�nition, a combination



IQV =
1�

P
(pk)2

n� 1
(22)

Where pk is the share of group k in the total population. This is a normalized version of

Euclidean distance from the origin. So with cross-category observations, the bi- or multi-racial

observations can be partially grouped into categories, changing the computation in a way that is

not immediately clear.

5.3 Application: Development and Political Institutions: The Index of Ethno-

linguisitic Fractionalization

Incredibly similar to the IQV is a measure known as the Index of Ethno-linguistic Fractionalization

(ELF), which is applied extensively in the literature in the �elds of political science and economic

development. The equation is given by:

ELF = 1�
kX

i=1

p2
k (23)

Where k � 2 and p2
k is the share of ehtnic group k in the total population. This is a version of

non-normalized Euclidean distance from the origin.





Bill Gates (2013, pg 52).



the same notation as above, denote total exports of country c as Xc, where Xc =

nX
i=1

Xc;i. De�ne

xc;i to be the share of good i in total exports of country c, where xc;i =
Xc;i

Xc
, and, consequently,

nX
i=1

xc;i = 1. Equivalently for a second, but with the subscript d, and for the world, with the sub-

script w. All measurements except the last two are assumed to be taken in the same time period,

so time subscripts are otherwise suppressed.

The Hirschman-Her�ndahl Index:

HHIc;d =

vuuuut
1 

nX
i=1

xc;i

!2 (24)

The export similarity Index, Finger and Kreinin (1979):

FKc;d =
nX

i=1

min (xc;i; xd;i) (25)

The Grubel-Lloyd Index, Grubel and Lloyd (1971):

GLc;d = 1�

nX
i=1

jXc;i �Xd;ij

nX
i=1

(Xc;i �Xd;i)

(26)

Two de�nitions are common for the Export Diversi�cation Index. The �rst follows directly from

Finger and Kreinin (1979):

DX1c =
nX

i=1

min (xc;i; xw;i) (27)

Where the subscript w stands for �world�. The more common de�nition is exactly the same as the

Hirschman Index:

DX2c =

vuuuut
1 

nX
i=1

xc;i

!2 (28)

The Trade Compatibility Index, Michaely (1996)11:



The Export Specialization Index:

ESc =
xc;i

md;i
(30)

Changes in Global Demand for Major Exports:

CGDc =

nX
i=1

Si;0 (Xi;t �Xi;0) (31)

Changes in Global Market Share for Major Exports:

CGMSc = (Si;t � Si;0)Mg;t (32)

And lastly, the Thiel Index of export concentration:

Tc =
1

n

nX
i=1

�
xiPn

i=1 xi

�
ln

�
xiPn

i=1 xi

�
(33)

As the reader can see, each trade statistic treats each export (or import) product as a separate

dimension, and there is no system of weights or compensation for dimensions being more or less

alike.

These trade statistics can be classi�ed in several ways. The Hirschman Index is of the absolute

type: they describe a country's export shares as some distance from the origin. All of the others are

of the relative type. The export diversi�cation (Finger and Kreinin) tells the manhattan distance

between a country's export shares and the world export shares. The rest give the distance between

two country's export shares: the Grubel-Lloyd gives the distance exactly in terms of Canberra

distance, and the rest of the trade statistics are of the relative type: they tell the distance between

two non-origin points. The export similarity and export diversi�cation measures (both based on

the work of Finger and Kreinin) are nearly identical to the Czekanowski Coe�cient, except that

they are already in terms of shares, whereas the Czekanowski Coe�cient converts to shares after

summing the values.

5.7.2 Simple Example: 2x2 International Trade

Consider a two-country world with two goods: guns and butter. The �rst country, denoted by c,

produces 20 percent butter and 80 percent guns, while the second country, denoted by d, produces
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70 percent butter and 30 percent guns:

yc =

�
yc;b

yc;g

�
=

�
0:2
0:8

�
; yd =

�
yd;b

yd;g

�
=

�
0:7
0:3

�
:

Then suppose the production of guns and butter share some common attributes. For example, both

need land: butter producers more so to raise dairy cows and but guns producers also need land

for placing factories. Both also need metal: butter producers need metal for producing churns and

vats, and but gun producers need metal relatively more to produce stocks and barrels. By some

external measurement process we know the the similarity between guns and butter to be 0.8, or 80

percent of the inputs are alike. Then the similarity matrix, denoted by � with individual elements

�b;b, �b;g, �g;b, and �g;789 1.777 Td [(,)]TJ/F8o



Figure 4: Unadjusted Shares

Figure 5: Projection onto Principal Axes

dyc;2 = [yc;2;1 + [yc;2;2 = 0 + 0:247 = 0:247

Lastly, because this is shares data, the the sum of the shares must equal 1:

dyc;1 +dyc;2 = 0:961 + 0:247 = 1:208

And then:
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dya
c;1 = 0:961

1:208 = 0:796

dya
c;2 = 0:247

1:208 = 0:204

Equivalently for country d: Project the yd;b vector onto the yd;1 and yd;2 axes:

[yd;1;1 = yd;b cos(0�) = 0:7(1) = 0:7

[yd;2;1 = yd;b sin(0�) = 0:7(0) = 0

Similarly, projecting the yd;g vector onto the yd;1 and yd;2 vector space yields:

[yd;1;2 = yd;g cos(18�) = 0:3(0:951) = 0:285

[yd;2;2 = yd;g sin(18�) = 0:3(0:309) = 0:093

And the last step for country c is to add together the results of the two projections:

dyd;1 = [yd;1;1 + [yd;1;2 = 0:7 + 0:285 = 0:985

dyd;2 = [yd;2;1 + [yd;2;2 = 0 + 0:093 = 0:093

Lastly, because this is shares data, the the sum of the shares must equal 1:

dyd;1 + dyd;2 = 0:985 + 0:093 = 1:078

And then:

dya
d;1 = 0:985

1:078 = 0:



And notice that for the unadjusted vectors, the normalized Euclidean distance would have been:

distac;d =
1p
2

p
(0:2� 0:7)2 + (0:8� 0:3)2 =

0:707p
2

= 0:5; (35)

As an aside, the Law of Cosines distance metric in Knippenberg (2012) �nds the Euclidean

distance between the unadjusted vectors which is equivalent to the distance between the adjusted

but non-normalized vectors, see Appendix B for the proof.

The reader can hopefully see that when similarity is zero, then cos(0) = 1, allowing the orthog-

onalization process to return the original vectors of guns and butter. Now, to take the analysis a

step further, assume that the export share vector of each country is in exactly the same proportion

as their production vectors:

xc = yc =

�
0:2
0:8

�
; xd = yd =

�
0:7
0:3

�
:

To abstract from any confounding e�ects, assume that each country has equal economic output, that

these are the only two countries in the world, and that each exports goods equal to 1 normalized unit

of value. Abstracting away from any theory on why the countries are trading or on their quantities

of that trade, the empirical international trade literature suggests a number of measures.

Using the original, unadjusted trade vectors, the composition of bilateral trade is given by

GLun
c;d = 0:5



1945, 1964):

Hc =
2X

i=1

�
xc;i

Xc

�2

(36)

Where xc;i=Xc is the share of good i in the export bundle of country c. Using the original data,

this comes out to be Hun
c = 0:68 and Hun

d = 0:58. And using the adjusted data vectors this comes

out as: Ha
c = 0:584 and Ha

d = 0:777. Again, the economic signi�cance of the di�erences between

these two measures is subjective, but what is interesting is that the ordering has reversed. Where

in the unadjusted index, country c was the more concentrated country, in the adjusted index, the

more concentrated country is now d.

5.7.3 The Product Space

Here I demonstrate the change-of-coordinates orthogonalization procedure in a high-dimensional

example: that of the product space of international trade. The product space is an idea conceived

and visualized by Hidalgo, et al. (2007), who use export shares to �nd a measure of similarity

between export product categories and then map them using a network analysis approach. I take

their analysis a step further by using the similarity measures to adjust the original country export

vectors, and I show that the measurements, while clearly correlated, are very di�erent. Because of

the computational intensity of the orthogonalization producedure 12 , I have only produced estimates

on the export similarity measure. A detailed treatment of the consequences of changing the export

similarity measure can be found in Knippenberg (2012), where I insert the new export similarity

measure into a gravity equation of international trade and �nd very di�erent results from previous

studies.

Export similarity was �rst conceived by Finger and Kreinin (1979) as a simple measure for

comparing export content across either countries or time. I denote this measure as FKc;d and it is

de�ned in equation (22). I use a version of FKc;d, which is derived in Sun and Ng (2000), and is

given in equation (19). The measure has been used in hundreds of academic papers on international

trade.

12Computing this variable for 47,653 observations took approximately four weeks on a desktop computer with a
quad-core 3.3Ghz processor.
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The steps taken to arrive at these export similarity indices are as follows. First I downloaded

the export data from Feenstra's website. The data is 4-digit SITC trade data with 799 categories.

I am using 5-year intervals from 1970 to 2000 for 133 countries. Second, I transform export values

into export shares. Third, I follow Hidalgo, et al. (2007) to calculate similarity between export

categories. Fourth, using this similarity matrix and export shares, I apply the orthogonalization

procedure to obtain the adjusted export vectors. Lastly, I apply a Euclidean Distance algorithm



Figure 6: Histograms of Export Similarity Measures

to situations in which similarity between variates or correlation is already accounted for, such as

regression analysis or principal components analysis. Given the nature of international trade shares

data, this orthogonalizaiton procedure is clearly applicable. Furthermore, New Trade Theory mod-

els assume an equal marginal rate of substitution between varieties of a good. However, if two

varieties are more similar than either are to any third, then equal marginal rates of substitution

cannot mathematically hold. After applying this orthogonalization procedure, the marginal rates

of substitution between the adjusted goods should be equal because the variables are orthogonal

to one another. This would make the data consistent with the theory, and is a promising area for

future research.

This procedure works only when a bivariate notion of �similarity� or �distance� is computable,

as these similarity measures directly feed into the equation. This procedure is not applicable where

similarity is not de�ned or calculable. Finding a way to calculate this similarity in many di�erent

contexts is an area for future research where notions of covariance, correlation, may be very impor-

tant. Furthermore, a simple lack of a way to calculate similarity doesn't make the previous distance

metrics any more valid - they are still computed using the incorrect coordinate system.
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6 Conclusion

I like the following quote from a linear algebra textbook: �Physical Laws must be independent of

any particular coordinate system used in describing them mathematically, if they are to be valid�

Spiegel (1959 pg 166). It reminds me that just because you can measure something doesn't mean

that what you have measured must necessarily obey the laws of your theory: sometimes a researcher

has to manipulate data to make sense of it. In the case of shares data, often it is in the wrong

coordinate system and must be converted to the proper system before familiar measures can be

applied, like measures of distance in the rectangular coordinate system. I have argued throughout

this paper that arbitrary classi�cations are not automatically de�ned by the rectangular coordinate

system. However the rectangular coordinate system is the only requirement for applying familiar

statistical distance metrics. In other words, the principle axes of the coordinate system are rarely

the same as the axes of the data, so distance metrics cannot be immediately applied.

Besides the justi�cation of the orthogonalization procedure, the previous paragraphs have also

laid out areas for future research. The more mundane of these include re-estimating the e�ects

of unbiased indices on outcomes. For example in trade, this would include the e�ect of export

similarity or diversi�cation on bilateral trade (Knippenberg 2012), or likewise the e�ect of the

Grubel-Lloyd or Her�ndahl Indices on various response variables. Theoretical research, on the

other hand, holds even more promising avenues. As touched upon earlier, the continuum of goods

assumption in International Trade can be re-visited: after normalizing the goods vectors, each

adjusted good should have equal marginal rates of substitution, as each represents an orthogonal

underlying good. I have written this paper in an attempt to stay as general as possible about its

applications: the extensive examples in international trade are merely a consequence of my own

experience. The concepts described herein have wide applicability in all areas of empirical research

and I look forward to conducting these applications in the near future.
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A Appendix: Proof to Equivalence of Finger-Kreinin and Sun-Ng

Distance Measures

This section provides a proof that the export similarity measures from Finger and Kreinin (1979)

(FK) and Sun and Ng (2000) (SN) are perfectly negatively correlated. Because of the minimum

function in FK and the absolute function in SN, this proof is not conducive to deduction, but an

inductive argument is easier to show. De�ne FK and SN according to their authors:

FK =

nX
i=1

min(
xc;i

Xc
;
xd;i

Xd
); (37)

and:

SN =
nX

i=1

jxc;i � xd;ij
2

(38)

Proposition:

Let n denote the number of export products. Let c and d be any two countries. Denote
export share of good i in country c as xc;i, where i = 1; :::; n. Because xc;i is an export share,

nX
i=1

xc;i = 1; (39)

is satis�ed by the de�nition of a share. The same equation also holds for any other country
d. Let the sums FK and SN be de�ned as above, then the following equality always holds:

SN = 1� FK (40)

Proof:

A.1 Case 1.1

Let n = 2 and Let xc;1 = xd;1, then because xc;1 + xc;2 = 1 and xd;1 + xd;2 = 1, it must also
be true that xc;2 = xd;2. In this case,

FK = min(xc;1; xd;1) +min(+xc;2; xd;2)

= xc;1 + xc;2

= 1

(41)

Similarly,

SN =
xc;1 � xd;1

2
+
xc;2 � xd;2

2
(42)

By assumption, xc;1 � xd;1 = 0 and since xc;2 = xd;2, then xc;2 d; 1





A.4 Case 2.2

Let n � 2 and xc;i > xd;i for i = 1; :::; j. Let xc;i > xd;i for i = 1; :::; k. Let xc;i > xd;i for
i = 1; :::; l. Where j + k + l = n, and j; k; l � 0. Then by de�ntion, Equation (37) implies:

FK =

jX
i=1

xc;i +
kX

i=1

xd;i +
lX

i=1

xc;i: (56)

Or equivalently where the last summation is replaced by xd;i; i = 1; :::; l. By the shares
de�nition, Equation (39) implies for country c:

jX
i=1

xc;i +
kX

i=1

xc;i +
lX

i=1

xc;i = 1; (57)

as well as for country d:
jX

i=1

xd;i +
kX

i=1

xd;i +
lX

i=1

xd;i = 1: (58)

And by the de�nition SN (38):

SN =
1

2

"
jX

i=1

(xc;i � xd;i) +
kX

i=1

(xd;i � xc;i) +
lX

i=1

(xc;i � xd;i)

#
: (59)

Distributing through the summations and rearranging yields:

SN =
1

2

"
jX

i=1

xc;i �
kX

i=1

xc;i +
lX

i=1

xc;i �
jX

i=1

xd;i +
kX

i=1

xd;i �
lX

i=1

xd;i

#
: (60)

Rearranging (57) implies:

jX
i=1

xc;i +
lX

i=1

x



Simplifying:

SN = 1�

"
kX

i=1

xc;i �
jX

i=1

xd;i �
lX

i=1

xd;i

#
: (65)

Then substituting in the de�nition of FK, Equation (56), yields the desired result:

SN = 1� FK: (66)

Thus the relationship holds for both n = 2 and n � 2, proving the proposition by induction.
�
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B Appendix: Proof of Equivalence Between Orthogonalization and

the n-Dimesional Law of Cosines

Proposition:

In an n-Hilbert space, the norm distance k< ~x1; ~x2 >k with similarity matrix � equals

k< ~̂x1; ~̂x2 >k with similarity matrix I, the identity matrix.
I will only prove this equivalence for the two-good case. The notation needed to prove





However, this property does not apply to a heterogeneous space such as the product
space for two reasons. First of all, as evidenced in Hidalgo et al (2007), the Product Space is
extremely heterogeneous: some areas of the product space are dense and others are disparate.
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