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ABSTRACT

This paper examines the implications of Goodman’s Identity for estimation and inference in

linear regression. Its empirical implementation requires the assumption of random coefficients or

measurement error. Under the former, regression can be surprisingly potent but is typically

misused. With one application of Goodman’s Identity, regression can test the neighborhood

model, aggregation bias and effects of covariates. Models with more than two groups are

completely identified and yield more powerful tests. However, most implementations unwit-

tingly impose the neighborhood model, weight incorrectly and offer meaningless R2 values as

“validation”. Moreover, regression is essentially useless for most models requiring two applica-

tions of Goodman’s Identity, including those of voting with unknown group-specific turnout

rates.
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Goodman (1953) asserts that the parameters in problems of ecological inference are related by an

identity. He proposes that, under appropriate conditions, regression analysis can recover them.

This proposal has subsequently been the basis of countless regression-based applications.

However, many implications of Goodman’s identity for these applications have not previously

been explored.

This paper demonstrates that regression techniques are both much more and much less

powerful than is generally understood. The literature has concluded that empirical techniques

cannot distinguish between the neighborhood model and Goodman’s identity as the underlying

source of observed data. It has also concluded that the form of aggregation bias, if present, is not

identifiable in linear specifications. Lastly, it tends to ignore many plausible covariates of the

behavior at issue. 

This paper demonstrates that, in a generalized linear specification of Goodman’s regression

with feasible corrections for heteroskedasticity, valid tests of aggregation bias, the neighborhood

hypothesis and the presence of covariates are possible. With more than two groups in the

population, linear aggregation bias is identifiable. However, these properties hold only where a

single application of Goodman’s identity is sufficient to describe the behavior at issue.

At least one important application, the comparison of voting choices across groups, usually

requires two applications of Goodman’s identity. The first addresses the unobserved turnout

rates within groups. The second addresses their unobserved vote choices. In this context,

regression-based estimators have expected values that depend on multiple parameters, usually in

nonlinear combinations. Identification is possible, if at all, only in models that are considerably

more restricted or considerably more complex than those that typically appear in the literature.



1 Throughout, square brackets contain quantities that are the objects of explicit algebraic
operations. Parentheses contain arguments to functions.
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[ ]y x xi i i i i≡ + −β β1 2 1 , (1)

Section I presents the general behavioral model that underlies Goodman’s regression in the

context of a single application of Goodman’s identity. Section II discusses the neighborhood

model, aggregation bias, heteroskedasticity and weighting in the context of this model, under the

assumption that measurement error is absent. Section III extends this model to the R×C case, in

which more than two groups are present in the population and more than one characteristic or

choice is at issue. Section IV explores the difficulties of regression-based inference when the

behavioral model requires two applications of Goodman’s identity. Section V concludes.

I. The behavioral model for Goodman’s regression

Goodman’s identity (Goodman, 1959, 612) relates the proportion of a population with a

particular characteristic or making a particular choice to the proportions of the population

comprised by its two constituent groups. Let

xi = the proportion of the population in area i that belongs to group 1,

1!xi = the proportion of the population in area i that belongs to group 2, and

yi = the proportion of the population in area i with the characteristic or choice at

issue.

The relationship between these three quantities in area i is the identity1

where



2 This is the “two-party, no abstention” case of Achen and Shively (1995, 30) and the “basic
model” in King (1997, chapter 6). The “ecological inference problem” is often stated as the challenge of
recovering parameters governing individual behavior from aggregate data (Robinson (1950, 352),
Goodman (1953, 663) and King (1997, 7), as examples). However, the parameters of Goodman’s identity
describe behavior at the aggregate level, here the “area”. Achen and Shively (1995) discuss the problem
of deriving macrorelations from microfoundations (pages 23-25) and present behavioral models in which
the aggregate parameters in Goodman’s identity become explicit functions of individual-level parameters
(chapters 2 and 4). King (1997, 119-122) discusses some difficulties with this approach.
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$1i = the proportion of group 1 in area i with the characteristic or making the choice,

and 

$2i = the proportion of group 2 in area i with the characteristic or making the choice,

are the two unknown parameters of interest.2

Equation 1 can be rewritten as

[ ]y xi i i i i≡ + −β β β2 1 2 . (2)

Equation 2 demonstrates that the proportion of the population with the characteristic or making

the choice can be represented as a linear function of the share of group 1 in the population. This

suggests an apparent analogy between equation 2 and the conventional representation of the

linear regression model.

Accordingly, Goodman (1953, 664 and 1959, 612) suggests that the parameters in this

behavioral identity can be estimated by an Ordinary Least Squares (OLS) regression of yi on xi,

with observations on n different areas displaying a variety of values for xi. In this example,

“Goodman’s regression” is



3 This analogy is common in subsequent literature. Kousser (2001, equation 13) is an example.
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estimators of $2i and $1i!$2i (1953, 664 and 1959, 612).3

However, the behavioral model that underlies OLS regression specifies that the dependent

variable is only partially determined by the explanatory variable. It also depends upon a random

component that is additive and orthogonal to the explanatory variable (Greene (2003, 10-11)).

The properties of this random variable allow the conventional empirical OLS model to yield

unbiased estimators.

In contrast, Goodman’s identity is exact. In the example of equation 2, the value of yi is

completely determined by the value of xi. Consequently, the analogy between Goodman’s

regression and the conventional linear regression model is superficial. The true properties of

estimators from Goodman’s regression must be derived analytically from the implications of the

identities upon which they are based, rather than by analogy from those of conventional OLS

estimators.

As written, the parameters of Goodman’s identity are not identifiable. In the example of

equation 2, a different identity holds for each area. Each area requires two unique parameters,

but provides only one observation (Achen and Shively (1995, 12), King (1997, 39)).

Under equation 2, the empirical regression of yi on xi given in equation 3 would be meaning-

less. The expected value of the slope coefficient would be

( )



4 Similarly, the area-specific parameters of equations 1 or 2 could be identified for area i if the
parameters $1i and $2i were constant over time, xi and yi were observed twice, and the group share xi was
different for the two observations. In this case, yi would necessarily also vary across the two, again
providing an exact solution. The regression of equation 3 would still yield the incomprehensible results of
equation 4. Regressions using only repeated observations for a single area would achieve a perfect fit.



5 This is a general form for the model of “deterministic heterogeneous transition rates” in Achen
and Shively (1995, 39-45).

6 “The assumption that the coefficients are independent of the regressors is the critical problem in
ecological inference.” (Rivers (1998, 442)). King (1997, 40) states that this assumption is “wrong” and
Achen and Shively (1995, 13) characterize it as “always dubious” (page 13). Both assert, correctly, that if
this assumption is false, typical specifications of Goodman’s regression are biased. The latter add, again
correctly, that the bias cannot be corrected through weighting (page 51, footnote 19).
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Goodman’s identity with empirical relevance. Moreover, the literature universally ignores the

implication of exact solutions embodied in equations 2 or 5 in favor of statistical formulations

such as equation 3. This implies that the collective intuition expects some random element in the

behaviors at issue.

In sum, sensible interpretations of Goodman’s regression in equation 3 require two types of

elaborations in Goodman’s identity. First, an assumption must be adopted to reduce the number

of parameters in equation 1. Second, an assumption must endow it with random components.

The first requirement can only be satisfied by specifying that the parameters for each area are

fixed functions of a limited number of variables:

( ) ( )β β1 1 1 2 2 2i i i i i if x z and f x z= =, , . (6)

This reduces the number of parameters to that necessary to characterize f1 and f2.5

In addition, equation 6 is the only formulation that preserves Goodman’s identity while

expanding it to include covariates of yi other than xi. In particular, it is the only formulation that

can explicitly incorporate “aggregation bias”, the possibility that the proportion of a group with



7



true value (Greene (2003, 84)). This is convenient below, where measurement error is disregarded.
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compare votes in an election from one year with population proportions from a census in

another. If these proportions  can change, the measured proportion may not accurately reflect the

relevant electorate.

Together, equations 1, 7 and 8 yield a general restatement of Goodman’s identity:

( )[ ][ ] ( )[ ] [ ][ ]y f x z x f x z xi i i i i i i i i i i i i≡ − + − + − + − −1 1 1 2 2 2 1* * * *, , ,ν ε ν ν ε ν

or

( ) ( ) ( )[ ]
( ) ( )
[ ][ ]

y f x z f x z f x z x

f x z f x z

x

i i i i i i i i i i i

i i i i i i i

i i i i i

≡ − + − − −

+
− − −

+ − − +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 2 1 1 2 2

1 1 2 2

1 2 2

* * * *

* *

*

, , ,

, ,
.

ν ν ν

ν ν ν

ε ε ν ε

(9)

Equation 9 demonstrates that this generalization is still an identity. Nevertheless, it has the

statistical character that is absent in equation 2 but present in equation 3. The two deterministic

terms to the right of the identity in equation 2 have their counterparts in the first two terms to the

right of the identity in equation 9. However, equation 9 contains ab>Tu7dmonstrates that t3 266.34 513.66 a6em4D ofith





explanatory variable. However, they conclude that “(t)hese fine points are always ignored in practice.”
Judge, Miller and Cho (2004) offer an attempt to confront them.

-10-

( ) ( ) ( )[ ] [ ][ ]
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A. Goodman’s regression and the “neighborhood model”

These interactions provide a test for a very controversial assumption. The “neighborhood model”

(Freedman, et al. (1991) and Klein, Sacks and Freedman (1991) ) assumes that, within any area,

the proportions of each group with the characteristic or making the choice at issue are identical.

Variation in yi



13 This test is implicit, though unacknowledged, in King (1997, 41-4). The previous literature
does not offer a precise general specification of the neighborhood model. Equation 10 demonstrates that
the specification in the text is the “weak form” of this model. The “strong form” would also require ,1i=
,2i. This imposes the restriction of homoskedasticity on the empirical error terms, which can presumably



16  Achen and Shively (1995, 40, footnote 8) also note that the complete multivariate linear
specification of Goodman’s identity requires interaction terms.

17 According to Achen and Shively (1995, 58) and King (1997, 32-3), linear combinations of the
area-specific parameters are often of interest. Kousser (2001, 107) suggests them as specification checks.

18 Equation 12 specifies f2 as a function of the group 2 proportion [1!xi] for consistency with the
analysis of Goodman’s regression when the population contains more than two groups, in section III
below. With only two groups, f2 could be specified as a function of the group 1 proportion xi instead. This
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where zi is a vector, k represents the number of covariates in zi and zij represents the jth covariate

in zi.

Under equation 12, equation 10 becomes

[ ] [ ] [ ] [ ]
[ ][ ]

y x z x z x

x x

i i j ij
j

k

i j j ij i
j

k

i i i i

= + + − − + + + + −

+ + −

= =
∑ ∑β β β β β β β β β β

ε ε

2 20 1 2 20 2
1

10 20
2

1 2
1

1 2

2

1 .
(13)

Each of the elements of zi appears linearly and interacted with xi.16 The latter variable appears in

both linear and quadratic terms.

Consequently, the appropriate estimating equation would be

y a bx c z dx h z x ei i j ij
j

k

i j ij i
j

k

i= + + + + +
= =
∑ ∑

1

2

1
, (14)

where ei represents the empirical residual term. The estimated coefficients a, b, cj, d and hj would

be unbiased estimators of $2+$20, $1!$2!2$20, $2j, $10+$20 and $1j!$2j, respectively. The

difference hj!cj would be an unbiased estimator of $1j. Linear combinations of all identified

parameters would be estimated without bias by the same linear combinations of the correspond-

ing estimators.17 $1, $10, $2 and $20 would not be individually identified.18



specification allows the additional identification of $2. However, this identification does not alter any of
the substantive results described here.

19 The power of this test may be limited. Even if evidence supports the assertion that $1j=$2j for all
j, it is still possible that $1…$2 and the neighborhood hypothesis is false. The difference $1!$2 is not
identified in equation 13, and therefore cannot be tested in equation 14. However, it may be identifiable if
additional restrictions apply to equation 12. For example, if f2 is free of aggregation bias, $20=0 and $10, $1
and $2 are identified.

20 Rivers (1998, 443) asserts that this model is unidentified. King (1997, section 3.2) and Voss
(2004, 72-73) provide simple examples. Achen and Shively (1995, chapters 5 and 6) discuss identifying
strategies in otherwise underidentified ecological re



$10 and $20.

21 This test does not restrict the treatment of zi in f1 and f2. It requires only that these functions be
linear in xi. More complicated functions of xi would probably suggest analogous tests. Although rejection
would definitively establish the presence of aggregation bias, this test again has limited power. Even if d



22  Heteroskedasticity is inherent in random co



25 King (1997, 61-5) and Achen and Shively (1995, 57-61) are critical of weighting by the inverse
square root of population. In contrast, Kousser (2001) asserts without proof that it corrects for
heteroskedasticity (page 112) and that it yields meaningful changes in the values of ecological regression
estimators (page 110). Achen and Shively (1995, 58-9) extend this latter argument. Both are wrong. With
the correct deterministic specification, weighted least squares estimators are unbiased and consistent for
the behavioral parameters with any weighting scheme that is not correlated with the true residuals,
including the equal weights of OLS (Greene (2003, 192-5)). In other words, the incorrect population
weights may alter point estimates somewhat, but have no effect on their expected values and distort their
standard errors. Kousser (2001) is an example of incorrect standard errors afflicted with both the



26



27 King (1997, page 170) suggests that covariates might be addressed by estimating $1i and $2i
with ecological inference under the assumption that f1 and f2 are constants, and then regressing these
estimates on covariates. Redding and James (2001) is an example. This strategy implicitly acknowledges
that these covariates should have appeared in the initial specification of f1 and f2. The consequences of
this misspecification are, predictably, difficult to ascertain (Adolph and King (2003), Adolph, King,
Herron and Shotts (2003) and Herron and Shotts (2003a, 2003b)).

28 Achen and Shively (1995, 34-38 and 129-131)
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29 The coefficients on zij identify $3j. With these results, the coefficients on zijx1i and zijx2i
identify $1j and $2j, respectively. The coefficient on x1ix2i identifies $30. With this result, the
coefficients on x1i

2 and x2i
2 identify $10 and $20, respectively and the constant identifies $3. With

this last result and the identification of $30, the coefficients on x1i and x2i identify $1 and $2,
respectively.
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The model of equations 15 and 16 contains 2+k parameters in addition to those in equation 13,

for a total of 3[2+k] parameters. However, the regression of equation 17 estimates 3+k coeffi-

cients in addition to those in equation 14. The additional coefficient is attributable to the

interaction term in x1ix2i, which conventional practice would be ordinarily, if incorrectly, omit.

As a consequence of this interaction term, the number of coefficients in the three-group

regression of equation 17 equals the number of underlying parameters. All are therefore identi-

fied, in contrast to the two-group regression of equation 13.29 As in equation 13, significance tests

on the estimated values for $1j, $2j and $3j indicate whether covariates are important.

Equation 17 also provides complete tests for the neighborhood model and for the presence of

aggregation bias. The neighborhood model implies 2k+4 restrictions on the regression of equation

17. The requirements that $1=$2=$3 and $10=$20=$30 imply four restrictions: the absolute values of

the coefficients on x1i, x2i, x1i
2, x2i

2 and x1ix2i should be identical. The requirement that $1j=$2j=$3j

implies 2k restrictions: the coefficients on zijx1i and zijx2i should all equal zero. The failure of any

of these restrictions would invalidate the neighborhood model.

Aggregation bias is present if $10…0, $20…0 or $30…0. The null hypothesis that it is absent,

$10=$20=$30=0, implies three restrictions: The coefficients on x1i
2, x2i

2 and x1ix2i should all be equal

to zero. The failure of any of these restrictions indicates that aggregation bias is present.

This test is more powerful than that in the case of two groups because the three restrictions

can be simultaneously satisfied if and only if aggregation bias is truly absent, $10=$20=$30=0. For



30 Proofs of these claims and those in the remainder of this section are available from the author.
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example, if $20=!$30…0, the second restriction would hold but the third would fail. Therefore, the

failure of any one of these restrictions indicates unambiguously that aggregation bias is present.

At the same time, the last line of equation 17 demonstrates that the residual in this regression

contains three random components, rather than the two of equation 13. The variance of the

random component for each area therefore depends on the population proportions of all three

groups in that area, the variances of the three group-specific random components and the three

unique covariances among them. Regression estimates must correct for the consequent

heteroskedasticity in order to test any of the restrictions implied by the neighborhood hypothesis

or the hypothesis of aggregation bias.

As the number of groups increases beyond three, the number of interaction terms between xki

and xmj proliferates more rapidly than the number of underlying parameters. Consequently,

models with R>3 groups are actually overidentified: They are based on 2+k parameters for each

group, or R[2+k] parameters in all. However, they estimate R[2+k]+½R[R!3] coefficients.

Therefore, ½R[R!3] restrictions are necessary in order to ensure that the estimates are consistent

with the underlying model. The effect of these restrictions on the explanatory power of the

regression provides a test of the underlying specification of Goodman’s Identity.30

The number of alternative characteristics or choices has many fewer implications for

Goodman-based estimation than does the number of groups in the population. The identities of

equations 1 and 15 do not depend on this number, and are therefore valid regardless of its value.

Consequently, the estimations of equations 13 and 17 do not depend on the number of

alternatives.
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Analogous identities and estimating equations would apply to any additional alternatives.

However, they would ordinarily be based on parameters that were specific to these alternatives.

Identification in each would be based on the results above. Multiple characteristics or choices

would provide additional leverage for identification across equations only if the underlying

behavioral theory indicated that equations for different alternatives shared common parameters.

In any case, with random coefficient specifications that are linear in the same variables for all

groups and all C alternatives, the number of informative equations is always C!1. All equations

are constrained by the requirements that the proportions of the population possessing each

characteristic or making each choice must sum to one, as must the corresponding proportions

within each group. Consequently, the last equation is always implied by the first C!1equations.

An election with two candidates provides an example: The fraction of a group in the elector-

ate that chooses to cast its votes for one candidate chooses not to cast its votes for the other. If yi

represents the proportion of votes cast for the first candidate, 1!yi represents the proportion of

votes cast for the second. Equation 13, with both sides multiplied by !1 and augmented by one,

expresses the relationship between the vote share of the second candidate and the explanatory

variables.

As is evident, estimation of this equation would be uninformative. It depends on the same set

of parameters as in equation 13. Moreover, neither this transformation of equation 13 nor its

combination with the original version are sufficient to identify $1, $10, $2 and $20.

Ecological estimation with more than two groups and more than two choices is known

generically as the “R×C model”. This section demonstrates that once again, OLS, properly

specified, should be a relatively attractive estimation technique for this model. Estimates are



31 King (1997, chapter 15) suggests a simplification relying on iterative applications of
the bivariate truncated normal distribution. This strategy may be subject to biases (Ferree
(2004)).
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unbiased and valid standard errors are available. With more than two groups, identification is

complete and may imply testable restrictions. Tests of the neighborhood hypothesis and aggrega-

tion bias are straightforward.

Only two other estimation techniques are available for the R×C problem: ecological inference

(King (1997, chapter 15)) and the binomial-beta hierarchical model (Rosen, Jiang, King and

Tanner (2001)). Both are computationally burdensome when fr is constant for all r.31 More

complicated specifications of fr would compound the difficulties. The questions of how the

restrictions implied by the neighborhood model or the absence of aggregation bias would be

imposed in these techniques are, as of now, not only unanswered, but unasked.

IV. Goodman’s regression with two Goodman’s identities

Kousser (2001, 110) asserts that the estimation of transition matrices relating partisan voting

patterns in two successive elections and the comparison of voting patterns across two different



32



33 Grofman, Migalski and Noviello (1985, 204) and Grofman, Handley and Niemi (1992, 86) are
examples of work in which this distinction, and its consequences discussed below, are ignored. The
approach here treats voting choice as conditional on turnout choice. This distinction is somewhat
artificial. A formulation such as that of Sanders (1998), in which abstention is an intermediate “voting”
choice when voters are approximately indifferent between candidates, is more natural. However, Sanders
(1998) implements this formulation with microdata, and does not explore its aggregation properties. As of



34 $1i, $2i, 81i and 82i, here correspond to $i
b,  $i

w, 8i
b and 8i

w in King (1997).
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81i = the unobserved ratio of votes cast by group 1 voters for candidate 1 to the number
of votes cast by group 1 voters in area i, and

82i = the unobserved ratio of votes cast by group 2 voters for candidate 1 to the number
of votes cast by group 2 voters in area i.34

The regression analogue to equation 19 is not in the form of Goodman’s regression because it

requires two explanatory variables, w1i and w2i. Regardless, it cannot estimate 81i and 82i directly

because both of these variables are unobserved.

However, by the above definitions wi=$1ixi and 1!wi=$2ixi. Therefore, equation 19 becomes

[ ]y x xi i i i i i i1 1 1 2 2 1≡ + −λ β λ β . (20)

Equation 20 establishes the identity between the observed shares of group 1 and group 2 members

in the electorate and the observed ratio of candidate 1 votes to the size of the electorate. It

combines the two identities of equations 18 and 19.

As in section I, this identity requires the random coefficients assumption in order to introduce
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or

[ ]
[ ] [ ][ ][ ]

[ ][ ]

y g f g f g f x

x g f x g f

x x

i i

i i i i i i

i i i i i i

1 2 2 1 1 2 2

1 1 1 1 2 2 2 2

1 1 2 2

1

1

≡ + −

+ + + − +

+ + −

ε ν ε ν

ε ν ε ν .

(23)

The comparison between equations 10 and 23 demonstrates two radical differences. First,  f1,

g1, f2, and g2, the deterministic components of y1i, enter equation 23 only nonlinearly. Therefore,

individual parameters appear only in products. 

Second, y1i in equation 23 depends on four disturbances, rather than two as in the case of a

single Goodman’s identity, or one as in conventional regression analysis. The residual terms in

the second line of equation 23 are linear combinations of random components with expected

values equal to zero, as in equation 10. However, the third line of equation 23 contains two

nonlinear combinations of random components. Their expected values are

( ) [ ]( ) [ ]E x x and E x xi i i i i i i iε ν σ ε ν σεν εν1 1 1 2 2 21 1= − = − , (24)

where F1,< and F2,< are the covariances between ,1i and <1i and between ,1i and <1i, respectively.

These covariances enter into the expected value of the dependent variable,

( ) [ ] [ ]E y g f g f g f x x xi i i i1 2 2 1 1 2 2 1 21≡ + − + + −σ σεν εν . (25)

Unobserved characteristics of an area that affect turnout for a group within that area are likely

to be related to voting preferences for that group, and vice versa. For example, if members of a

group have an idiosyncratically strong preference for a particular candidate, this preference may

stimulate an idiosyncratically high turnout. Therefore, the covariances in equations 24 and 25



35 The discussion here assumes that f1, g1, f2 and g2 are correctly specified. Any variables
incorrectly omitted from these functions will be incorporated in the residuals. Nonzero empirical
covariances will also result if variables omitted from 



38 Zax (2005) demonstrates that “double regression”, a common prescription for this problem,
fails utterly to resolve it.

-30-
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and

( )E b3 10 10 20 20= −β λ β λ . (32)

These four terms contain ten parameters. Again, none are identified.
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g x z x z and g x z x zi i i j ij
j

k

i i i j ij
j

k

1 1 10 1
1

2 2 20 2
1

( , ) ( , ) .= + + = + +
= =
∑ ∑λ λ λ λ λ λ
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not promising. However, heteroskedasticity must still be addressed in order to perform the

inference  necessary to validate and interpret any model. For most applications, White

heteroskedasticity-consistent standard errors (Greene (2003, 219-220)) will probably prove to be

more practical than structural estimation of the components in the theoretical residual variances.

In sum, the only contexts in which OLS regression has any hope of recovering the underlying

behavioral parameters from two applications of Goodman’s identity are in models that are heavily

restricted or relatively rich, specifying at least several covariate determinants of the behavior at

issue. As in the case of a single applications of Goodman’s identity, these covariates must be

interacted with the population proportion xi in order to avoid the inadvertent imposition of the

neighborhood model. Moreover, if covariates affect both the propensity of group r members to

select into the subpopulation for which the behavior of interest is relevant, gr, and the propensity

of group members to choose that behavior, fr, they must be appropriately interacted with each

other, as well.

Models that fulfill these requirements appeared to be absent from the literature of the social

sciences. The unfortunate corollary is that most, if not all extant regression statistics for contexts

involving two applications of Goodman’s Identity are worthless: They have no known relation-

ships to the parameters they purport to estimate. The optimistic response is that, with appropriate

construction, these contexts may invite the estimation of empirical models that are much more

ambitious and intriguing than previously attempted.

For the moment, only ecological inference (King (1997)) correctly specifies equation 22.

Consequently, it is the only technique available that identifies the parameters in g1, f1, g2 and f2.

However, computational limitations currently restrict the specifications of these functions. While
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these restrictions are likely to be relaxed as computational power and techniques improve,

dramatic improvements will be necessary in order to accommodate truly flexible specifications.

Parallel efforts to construct plausible models that are correctly-specified and identifiable in

regression may therefore be worthwhile.

V. Conclusion

This paper demonstrates that regression-based applications of Goodman’s identity can be much

more effective than previously understood. In contexts where a single application of Goodman’s

identity is sufficient to characterize the behavior at issue, OLS estimates of the generalized

Goodman’s regression in equation 13 are unbiased. They are also heteroskedastic, but corrections

are feasible.

With these corrections, OLS estimators provide valid statistical tests for the neighborhood

model, aggregation bias, and the significance of covariates. Moreover, identification in these

models improves as the number of groups in the population increases. These results, coupled with

the flexibility and tractability of OLS, suggest that correctly specified models should be valuable

tools in the analysis of single applications of Goodman’s regression, notwithstanding the risk of

estimates outside the bounds of zero and one, and the ingenuity embodied in recent attempts to

provide improved estimators (King (1997), King, Rosen and Tanner (1999) and Lewis (2004) as

examples).

Contexts where the proportions of groups that engage in the behavior at issue are unknown

require two applications of Goodman’s identity. In these contexts, individual estimates from

Goodman’s regression do not identify individual behavioral parameters. Identification may be
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possible if models contain sufficiently numerous restrictions or explanatory variables, but these

options have not been explored. With, again, appropriate corrections for heteroskedasticity, valid

tests may be available for the neighborhood model, aggregation bias and the significance of

covariates.

This paper also demonstrates that current practice in the application of Goodman’s regression

typically fails to achieve any of these results. Most empirical exercises specify the implied

empirical models incorrectly, ignore heteroskedasticity and offer neither hypothesis tests nor

confidence intervals, valid or otherwise. Instead, they are contaminated with arbitrary weights

that exacerbate heteroskedasticity, and justified with R2 values that are meaningless. Clearly,

more than 50 years after it was first promulgated, Goodman’s Identity has yet to be fully

appreciated.
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