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1 Introduction

Deep neural networks (DNNs) have proven useful in the analysis of time series in economics and

�nance (e.g., Gu et al., 2020; Bucci, 2020; Criado-Ram�on et al., 2022; Lazcano et al., 2024) and

have become increasingly popular in empirical modeling (e.g., Sadhwani et al., 2021; Maliar

et al., 2021; Leippold et al., 2022; Murray et al., 2024). However, the statistical properties

of DNN estimators with dependent data are largely unknown, and existing results for general

nonparametric estimators are often inapplicable to DNN estimators. As a result, empirical use



and White (1991), which di�ers from previous results, such as those in Chen and Shen (1998)

and Chen and Christensen (2015), by not requiring stationarity. Theorem 2 extends Farrell

et al. (2021, Theorem 2) beyond DNNs and i.i.d. settings, to provide non-asymptotic proba-

bility bounds on both the theoretical and empiricalL 2-errors of general sieve estimators under

stationary � -mixing data. These results are well suited to the study of DNN estimators for

two key reasons. First, they accommodate general sieve extremum estimation and are not re-

stricted to series methods treated by Chen and Christensen (2015), as verifying basis function

properties is impractical with DNNs' adaptive structure. Second, they avoid conditions on the

sieve spaces, relying on entropy with bracketing or interpolation betweenL 1 and L 2 norms

(e.g. Chen and Shen, 1998, Conditions A.3 and A.4), which are not feasible for DNNs when

network depth diverges with sample size.

Using these general results, I derive statistical properties for DNN estimators with architec-

tures that reect modern applications: (i) fully connected feedforward networks with contin-

uous piece-wise linear activation functions; (ii) no parameter constraints; and (iii) depth and

width that grow with sample size.2 While early research focused on shallow, often single layer

networks with smooth activation functions (e.g. White and Gallant, 1992; Makovoz, 1998; An-

thony and Bartlett, 1999), modern applications favor deep networks with many hidden layers

(Szegedy et al., 2016; Schmidt-Hieber, 2020). To mitigate the increased computational demands

of deep networks, modern implementations do not impose parameter constraints and often use

non-smooth activation functions (e.g., Glorot et al., 2011). Among DNN architectures, fully

connected feedforward DNNs are standard in practice (Almeida, 2020; Criado-Ram�on et al.,

2022), and are frequently applied in time-series settings (e.g. Dudek, 2016; Borghi et al., 2021;

AlShafeey and Cs�aki, 2021). Recently, the most popular activation function has been the recti-

�ed linear unit (ReLU), � (x) = max f 0; xg (LeCun et al., 2015), which will be the main focus of

this paper's DNN results.3 However, Subsection 3.4 shows that my results apply to DNNs with

2Fully connected feedforward neural networks with more than three hidden layers are often referred to as
multilayer perceptrons in the DNN literature.

3Compared to smooth activation functions, ReLU activation functions have also been shown to o�er im-
proved properties both empirically (e.g., Sadhwani et al., 2021) and theoretically (e.g., Glorot et al., 2011).
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any continuous piecewise-linear activation function, and discusses how similar results could be

obtained for alternative DNN architectures, including those with sigmoid activation functions.4

Two results are obtained for these DNN estimators in nonparametric regression settings

with mixing processes and unbounded regressors. Theorem 3 applies Theorem 1, to obtain

convergence rates for theL 2-error with non-stationary � -mixing data, and Theorem 4 applies

Theorem 2 to obtain error bounds with stationary� -mixing data. When the regressors are

bounded, Theorem 4 implies a convergence rate di�ering from the rate of that obtained by

Farrell et al. (2021, Theorem 1) under i.i.d. data by only a poly-logarithmic factor, making this

result useful for inference in some semiparametric settings, as discussed below.

The third DNN result pertains to classi�cation, one of the most common applications for

neural networks. I apply Theorem 1 to obtain convergence rates in logistic binomial autore-

gression models with covariates. A similar approach could also yield results for multinomial

or non-logistic models using the ideas from Farrell et al. (2021, Lemma 9). Previous studies



Bauer and Kohler (2019), Schmidt-Hieber (2020), Kohler and Langer (2021), and dependent

data Kohler and Langer (2021), Kurisu et al. (2024). The compositional nature of neural net-

works makes them well-suited for estimating these restricted function classes. These studies use

this to obtain rapid, near minimax convergence rates, in some cases surpassing traditional non-

parametric estimators (Schmidt-Hieber, 2020). While this literature o�ers possible theoretical

insights into why DNNs have outperformed traditional estimators in some empirical work (e.g.,

Gu et al., 2020; Bucci, 2020), my approach di�ers by establishing a more exible framework

for studying various DNN estimators in more general settings under time series data. I provide

statistical properties for a common class of DNN architectures, considering both nonparametric

regression and classi�cation, under a H•older smoothness condition, which is more general than

these restricted classes. My work also adds generality by not placing bounds on the parameters,

which can be critical for feasible implementation (see Farrell et al., 2021 for discussion).

Recently, Kurisu et al. (2024) provided closely related general results for DNN estimators

and sparse-penalized adaptive DNN estimators for nonparametric regression under nonstation-

ary � -mixing data. My work adds generality to their results since they require parameter

constraints, focus only on regression settings, and impose structural assumptions on the re-

gression function when applying their �ndings, although their general results do not explicitly

make this restriction. While I do not address adaptive network architectures, empirical gains

from sparsity penalties or other regularization techniques are often unclear (Zhang et al., 2017),

and in many cases my general results could apply to similar adaptive DNNs in contexts be-

yond nonparametric regression, following the ideas discussed in Subsection 3.4. Theorem 3 of

this paper also o�ers some added generality by allowing nonstationary� -mixing data, rather

than � -mixing. One advantage of Kurisu et al. (2024) is that they o�er some consideration

of � -mixing coe�cients with polynomial decay, whereas my DNN results only focus on mixing

coe�cients with exponential decay.

The rest of the paper is organized as follows. Section 2 considers a general nonparametric

estimation setting and gives the main results for general sieve estimators. Section 3 describes
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the class of DNN architectures considered in this paper and applies the results of Section 2 to

derive properties of DNN estimators in nonparametric regression and classi�cation contexts. A

discussion of extensions to alternative architectures is also provided. Section 4 concludes and

discusses avenues for future research. An appendix provides general measurability results for

sieve estimation settings, technical proofs for all of the results presented in the paper, and a

complete description of the notation used in the paper.

2 General sieve estimators

This section considers the problem of non-parametric sieve extremum estimation with depen-
















