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A natural generalization of the Hénon map of the plane is a quadratic diffeomorphism that has a quadratic inverse. 
We study the case when these maps are volume preserving, which generalizes the the family of symplectic quadratic 
maps studied by Moser. In this paper we obtain a characterization of tliese maps for dimension four and less. In 
addition, we use Moser's result to construct a subfamily of in n dimensions. 

1. Introduction 

Some of the simplest nonlinear systems are given by quadratic maps: for example the logistic map 
in one dimension and the quadratic map introduced by Hénon [14, 15] in the plane. It is easy to see 
that any quadratic, one dimensional map with a fixed point is affinely conjugate to the logistic map, 
xy-^ rx{\ — x). In a similar way, Hénon showed that a generic quadratic area-preserving mapping of 
the plane can be written in normal form as 

: ) - ( 
k + y + x^ 

-X 

which has a single parameter k. 
Hénon's study can be generalized in several directions. Moser [22] studied a class of quadratic 

symplectic maps, having obtained a useful decomposition and normal form. For example, when the 
map is quadratic and symplectic in M^", Moser [22,19] showed that it can be written as the composition 
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where W is a homogeneous cubic polynomial in p. The map given in (1) is a particular example of 
what we call a quadratic shear. 

Def in i t ion 1. A quadratic shear is a bijective map of the form 

X ^ fix) = X + -Qix), (2) 

where Q{x) is a vector of homogeneous, quadratic polynomials such that f~^ is also a quadratic map. 

In this way Moser's result is basically a characterization of all symplectic quadratic shears. One of 
the remarkable aspects of this is that quadratic symplectic maps necessarily have quadratic inverses. 
In general we can write a quadratic map on E" as the composition of an affine map with a quadratic 
map that is zero at the origin and is the identity at linear order: 

x ^-¥ fix) = xo + L{x +-Q{x)), (3) 

where SQ S M", L is a matrix, and Qix) is a vector of homogeneous, quadratic polynomials. Note 
that if the map / is volume preserving then it is necessary that L satisfies det(L) = 1. Similarly if / 
is symplectic, then L must be a symplectic matrix. Of course, the quadratic terms also can not be 
chosen arbitrarily in these cases. 

Polynomial maps are of interest from a mathematical perspective. Much work has been done 
on the "Cremona maps", that is polynomial maps with constant Jacobians 
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ii)=>i) By assumption, det(D/(a;)) and det(D/ ^(/(a;))) are polynomials in xi,X2,-.- ,a:„. 
However, differentiation of f~^(f{x)) = x gives 

det{Dr\f{x)))detiDf{x))=^l, 

and therefore, since both are polynomials, det{Df{x)) has to be a constant independent of x. We 
notice that det{Df{x)) = det{D/(0)) = det(/) = 1. 

i)=>iii) Since det( / + M{x)) = 1 and M is linear in x, then for any C 7̂  0 

det{M{x)-CI) = ( - l )"C"det( / + M(-^a;)) = (-1)"C". 

This implies that the characteristic polynomial of M{x) is (—C)" and therefore [M(a;)]" = 0. • 

At this point, we restrict
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A map / i
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4. Dimensions Three and Four 

Following Coroliary 1, we would like to establish the stronger result that M(a;)^ = 0 for all x. In 
this
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PaccMOTpeHHo ofioSmeKHe oTo6pa»eHHH XenoHa «JIH njiocKOCTH, KOTopbiM HenneTCfl KBaflpaTHiHbifl flH({)(})eoMop-
$H3M, HMeiomHft KBaflpaxHiHLifl o(5paTHJ>nop-


