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out noise in the original dataset. The reconstructed low
dimensional dynamics can then be used to accurately calcu-
late important dynamical invariants such as fractal dimen-
sions and Lyapunov exponents. As an illustrative example,
we apply this procedure to a system of globally coupled
Landau-Stuart oscillators that appears to exhibit macroscopic
chaos with substantial superposed noise-like finite-size
fluctuations.

The remainder of this paper is organized as follows. In
Sec. I, we describe the system of Landau-Stuart oscillators
and summarize its dynamics and observed finite-size fluctua-
tions. In Sec. 111, we describe our method for reconstructing
the low dimensional dynamics. In Sec. IV, we demonstrate
our method’s utility in calculating invariants of the macro-
scopic dynamics of the Landau-Stuart system. In Sec. V, we
conclude with a discussion of our results.

Il. SYSTEM DYNAMICS

In this paper, we use as our primary example a system
of N globally-coupled Landau-Stuart oscillators whose
dynamics are governed by
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section resulting in the (dy — 1)-dimensional state vector x,
whose components we denote as ¥ = [xV); ...; x4 Y], we
will from here onwards denote the original (noisy) and
reconstructed (denoised) state variables as x and x, respec-
tively. The surface of section for the noisy data defines a
noisy mapping of the form

X1 ~ F(xn); &)

where x,, represents the nth piercing of the surface of sec-
tions by the noisy data and F:R¥ ! = R%! is an
unknown mapping function which we assume is continu-
ously differentiable and encodes the hypothesized low
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as ours is, this reduces to d. = 1 + 41=|/,|. Given in Table I,
this is our first fractal dimension for the strange attractor.

We next consider two other fractal dimensions, the
information and correlation dimensions.>**” Formally, these
dimensions are measured by partitioning the domain of the
attractor into N( ) cubes each of unit size and calculating
the fraction of time y; spent by typical orbits in each box i.
The information and correlation dimensions are defined,
respectively, by
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We proceed by calculating these quantities using the meth-
ods outlined in Refs. 38 and 39 with 10° points generated by
the reconstructed dynamics and report them in Table I.

Finally, we comment briefly on the Kaplan-Yorke con-
jecture.®® The Kaplan-Yorke conjecture states that for typical
systems (i.e., systems that are not pathologically engi-
neered), the information dimension is equal to the Lyapunov
dimension, d; =
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