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ABSTRACT

Networks of excitable systems provide a flexible and tractable model for various phenomena in biology, social sciences, and physics.
A large class of such models undergo a continuous phase transition as the excitability of the nodes is increased. However, mod-
els of excitability that result in this continuous phase transition are based implicitly on the assumption that the probability that a
node gets excited, its transfer function, is linear for small inputs. In this paper, we consider the effect of cooperative excitations, and
more generally the case of a nonlinear transfer function, on the collective dynamics of networks of excitable systems. We find that
the introduction of any amount of nonlinearity changes qualitatively the dynamical properties of the system, inducing a discontinu-
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and using independence, we find

E [s1]
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state and the supercritical state, but the basin of attraction of the
absorbing state is typically very small. The phase diagram for the
system is shown in Fig. 5 in the limit N → ∞.

We also studied the behavior of the model for large but finite
networks. As a representative case of initial conditions consisting
of a small number of excited nodes, we studied in detail the case
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which admits the solution pt
i = λtui, where ui and λ are the eigen-

vector and (largest) eigenvalue of the A matrix. Equation (A1) holds
for the case where at least one node can excite another node. Now
let us consider the case where two excited nodes are necessary for
exciting one node. Then this equation changes to

pt+1
i = (1 − pt

i)



η + (1 − η)



1 −

N
∏

j>k

(1 − pt
jp

t
kAijAik)







 , (A3)

which for small p limit and η
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