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1. Introduction

The interaction of dispersive waves with slowly varying mean flows is a fundamental and
canonical problem of fluid mechanics with important applications in geophysical fluid
dynamics (see, e.g. Pedlosky (2003), Mei, Stiassnie & Yue (2005), Bühler (2009) and
references therein). This multiscale problem is relevant for linear or weakly nonlinear
wavepackets and large amplitude solitons – in this work, we do not distinguish between
solitary waves and solitons. Traditionally, the mean flow involved in the interaction
is either prescribed externally, e.g. an external current, or is induced by amplitude
modulations of a nonlinear wave. A different class of wave–mean flow interactions has
recently been identified in Maiden et al. (2018), where both the dynamic mean flow
and the propagating localised soliton are described by the same dispersive hydrodynamic
equation, a canonical example being the Korteweg–de Vries (KdV) equation. However, the
evolution of the field u(x, t) occurs on two well-separated spatio-temporal scales, allowing
for the distinct identification of waves and mean flows. A prototypical configuration of
this (figure 1) is the propagation of a soliton through a dynamically evolving macroscopic
flow, characterised by different asymptotic states u → u± as x → ±∞. We refer to such
nonlinear wave interactions as soliton–mean flow interactions. The simplest mean flows
are initiated by a monotone transition or step between u− and u+, which asymptotically
develops into either a rarefaction wave (RW) or a highly oscillatory dispersive shock wave
(DSW) (Gurevich & Pitaevskii 1974; El & Hoefer 2016). While the former is slowly
varying, the use of the expression ‘mean flow’ for the latter implies some averaging
over rapid oscillations. We shall refer to the step problem for dispersive hydrodynamics
as a dispersive Riemann problem. Solitons, RWs and DSWs (also known as undular
bores) are ubiquitous and fundamental nonlinear wave structures occurring in a variety
of geophysical fluid contexts including internal waves in lakes or oceans (Boegman, Ivey
& Imberger 2005; Helfrich & Melville 2006; Madsen, Fuhrman & Schäffer 2008; Jamshidi
& Johnson 2020) and surface water waves (Chanson 2010; Chassagne et al. 2019) as
well as magma and glacier flows (Scott & Stevenson 1984; Stubblefield, Spiegelman
& Creyts 2020), so the problem of their interaction is of considerable interest for fluid
dynamics applications. Depending upon its initial position and amplitude, the soliton
may transmit or ‘tunnel’ through the large scale, expanding mean flow; otherwise, it
remains trapped within the mean flow. Recent work has investigated the interaction
between solitons and mean flows resulting from the evolution of an initial step. Both fluid
conduit experiments and the theory for a rather general, single dispersive hydrodynamic
conservation law were described in Maiden et al. (2018). A generalisation of soliton–mean
flow interaction to the bidirectional case for a pair of conservation laws described by
the defocusing nonlinear Schrödinger equation (NLS) equation was explored in Sprenger,
Hoefer & El (2018). Soliton–mean flow interaction in the focusing NLS equation was
investigated in Biondini & Lottes (2019). A similar problem involving the interaction of
linear wavepackets with shallow-water wave mean flows modelled by the KdV equation
was studied using an analogous modulation theory framework in Congy, El & Hoefer
(2019). Aside from the focusing NLS case, for which mean flow evolution is described by
an elliptic system of equations, and the present work, the models previously investigated in
the context of soliton–mean flow interaction were limited to dispersive conservation laws
with hyperbolic, convex flux.

The focus of this work is the study of soliton–mean flow interaction when the governing
dispersive hydrodynamics exhibits a non-convex hydrodynamic flux. As we show, the
presence of non-convex flux, e.g. the cubic flux in the modified KdV (mKdV) equation
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Figure 1. Representative initial configuration for soliton–mean flow interaction. The narrow soliton with
amplitude a− on the uniform mean flow u− transmits through the broad hydrodynamic flow if it reaches the
uniform mean flow u+, surpassing all initial mean-generated oscillations. Otherwise, it experiences trapping
inside the mean flow. The mean flow generally exhibits expansion and compression waves.

trapping scenarios realised in the KdV case. First of all, due to the non-convex flux,
the mKdV equation supports a much broader family of solitons and mean flow solutions
than the KdV equation, including localised solutions in the form of exponentially decaying
solitons of both polarities and, depending on the dispersion sign, kinks and algebraic
solitons. The mKdV non-convex mean flow features include undercompressive DSWs
(an alternative interpretation of kinks), contact DSWs (CDSWs) and compound two-wave
structures (Kamchatnov et al. 2012, 2013; El, Hoefer & Shearer 2017). Here, we investigate
how the solution features that arise due to non-convex flux affect soliton–mean flow
interactions. In particular, we show that soliton transmission for the defocusing mKdV
equation can be accompanied by a soliton polarity change. In the focusing case, there
is a soliton–mean flow interaction in which an exponential soliton is asymptotically
transformed into a trapped algebraic soliton. These are just two examples of the rich
catalogue of soliton–mean flow interactions we describe in this paper.

Key to the study of soliton–mean flow interaction is scale separation, whereby the
characteristic length and time scales of the propagating soliton are much shorter than
those of the mean flow. The rapidly oscillating structure of dispersive hydrodynamic flows
motivates the use of multiscale asymptotic methods. Here, we will make extensive use of
one such method known as Whitham modulation theory (Whitham 1974), which is based
on a projection of the scalar dispersive hydrodynamics onto a three-parameter family of
slowly varying periodic travelling wave solutions to the governing equation. The projection
is achieved, equivalently, by averaging conservation laws, an averaged variational
principle, or multiple scale perturbation methods. The dispersive hydrodynamics is then
approximately described by a system of three first-order quasilinear partial differential
equations (PDEs) – the Whitham modulation equations – for the periodic travelling wave’s
parameters such as the wave amplitude, the wavenumber and the period mean. Within
the framework of Whitham modulation theory, the original dispersive Riemann problem
is posed as a special Riemann problem, sometimes called the Gurevich–Pitaevskii (GP)
problem (Gurevich & Pitaevskii 1974), for the modulation equations subject to piecewise
constant initial data with a single discontinuity at the origin. Continuous, self-similar
solutions of the GP problem describe RW and DSW mean flow modulations.

Classical DSW modulation theory has been developed for the KdV equation (Gurevich
& Pitaevskii 1974) and other ‘KdV-like’ equations, both integrable and non-integrable
(El 2005; El & Hoefer 2016). It is useful to identify this class of KdV-type equations,
or classical, convex dispersive hydrodynamic equations, as those equations for which the
associated Whitham modulation equations are strictly hyperbolic and genuinely nonlinear.
In this case, the generic solution of the GP problem is either a DSW or a RW. More broadly,
even non
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equations remain strictly hyperbolic and genuinely nonlinear. Therefore, we shall call
the DSWs generated within the framework of convex dispersive hydrodynamics convex
DSWs.

It was shown in Maiden et al. (2018) that the interaction of a soliton with a RW is
described by an exact, soliton limit reduction of the Whitham modulation system, which
we call the solitonic modulation system. Two integrals or adiabatic invariants of the
solitonic modulation system were identified that determine the amplitude and phase shift
of the soliton when transmitted through the variable mean flow. The non-existence of
a transmitted soliton (zero or negative transmitted amplitude) signifies soliton trapping
within the mean flow. The soliton–DSW transmission/trapping conditions were shown
to be equivalent to those for the soliton–RW interaction by the fundamental property of
hydrodynamic reciprocity of the modulation solution, which is related to time reversibility
of the original dispersive hydrodynamics.

In this paper, we investigate the effects of a flux’s non-convex
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Ω(k, ū) = o(k) as k → 0 and Ωkk(k, ū) is not identically zero in order to separate the
long-wave hydrodynamic flux from short-wave dispersive effects. The field of dispersive
hydrodynamics encompasses multiscale nonlinear wave solutions of initial and boundary
value problems for (2.1) (possibly with perturbations) in which at least two length and
time scales play a prominent role: the oscillatory scale (e.g. the width of a soliton or the
wavelength/period of a periodic travelling wave) and a longer, hydrodynamic scale (e.g. the
slowly varying oscillatory amplitude of a wavepacket or DSW). One canonical dispersive
hydrodynamic problem for (2.1) is the so-called GP problem (Gurevich & Pitaevskii 1974)
in which u(x, 0) for x ∈ R exhibits a sharp, monotone transition between two distinct
far-field boundary conditions. The solution of the GP problem then describes the long-time
asymptotic behaviour for more general initial data with distinct far-field equilibrium states.

When f
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system is non-strictly hyperbolic (the eigenvectors ri span R
3 but multiple eigenvalues are

admissible), then it is not genuinely nonlinear either (Dafermos 2016). The converse is
generally not true. Nevertheless, a non-convex system can exhibit convex properties in a
restricted domain D ⊂ A.

The KdV–Whitham modulation system (3.1) is strictly hyperbolic and genuinely
nonlinear for all admissible u ∈ A (Levermore 1988), while for the mKdV equation, the
properties of strict hyperbolicity and genuine nonlinearity depend on the sign of μ and on
u (El et al. 2017).

An important ingredient for modulation theory is the equation for k in (3.1)

kt + [ω(ū, k, a)]x = 0, (3.3)

known as the conservation of waves, where ω(ū, k, a) is the travelling wave frequency.
Soliton–mean interaction theory is based on the fundamental property of Whitham

modulation systems that we postulate here in a general form and later explicitly justify
for mKdV: in the k → 0 soliton limit, the modulation system (3.1) admits the following
exact reduction (Gurevich, Krylov & El 1990):[

ū
a

]
t
+
[

f ′(ū) 0
g(a, ū) c(a, ū)

] [
ū
a

]
x

=
[
0
0

]
, (3.4)

where c(a, ū) = limk→0(ω/k) is the soliton amplitude–speed relation for propagation on
the background ū and g(a, ū) is a coupling function that is system dependent. Equation
(3.4) is called the solitonic modulation system.

The third modulation equation (3.3) is identically satisfied for k = 0 while for 0 < k �
1, it assumes at leading order the form

kt + [c(a, ū)k]x = 0. (3.5)

Equation (3.5) can be added to the solitonic modulation system (3.4) to give an
approximate modulation system for a train of non-interacting solitons propagating on a
variable mean flow. Equation (3.5) then signifies the conservation of the number of solitons
in the train. We shall refer to the combined system (3.4) and (3.5) as the augmented
solitonic modulation system. Note that a particular case of this system was derived in
Grimshaw (1979) for slowly varying soliton solutions of the variable coefficient KdV
equation.

The soliton train interpretation of the modulation system (3.4) is instrumental for a
solitonic dispersive hydrodynamics as it enables the description of a single modulated
soliton by treating the soliton amplitude a(x, t) as a spatio-temporal field, in contrast
to standard soliton perturbation theory where the soliton’s parameters evolve temporally
along its trajectory in the x, t-plane; see, e.g. Kivshar & Malomed (1989). Additionally, as
we will show, the introduction of the fictitious wavenumber field k(x, t)
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a convenient normalisation is suggested by the requirement to maintain strict hyperbolicity
of the solitonic system in the limit of vanishing amplitude where the long-wave speed
f ′(ū) and soliton speed c(a, ū) must coincide. The variable k̃ can be identified as
an amplitude-type variable (El 2005), so that k̃ = 0 ⇐⇒ a = 0, and requires that the
hydrodynamic and solitonic Riemann invariants coincide when k̃ → 0, i.e. Q(0, ū) = ū.
As a result, the system (3.11) reduces to a single hyperbolic equation ūt + f ′(ū)ūx = 0.
The situation is different for non-convex systems, where two or more distinct Riemann
invariants associated with the same characteristic speed may exist. For example, for cubic
flux f (ū) = ū3, the mean flow equation ūt + 3ū2ūx = 0 is invariant with respect to the
transformation ū → −ū so another possible normalisation is Q(0, ū) = −ū. To avoid
ambiguity, we will be using the
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(3.21a,b), yielding the relations between admissible values of a± and k± in (3.23a,b).
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conditions (3.24), (3.25). Otherwise, if the transmitted amplitude a− ≤ 0, the soliton
remains trapped within the mean flow.

The generalisation to negative (dark) soliton interaction with mean flow is
straightforward. For this, it is convenient to introduce a signed amplitude a, which enables
the representation of both bright a > 0 and dark a < 0 solitons. Assuming negative initial
amplitude a± < 0, forward/backward transmission requires that the transmitted amplitude
a∓ maintains the same, negative, sign. Generally, the condition a+a− > 0 is the sufficient
condition for transmission in both bright and dark soliton cases. Its negation implies
trapping.

In all cases of forward/backward transmission/trapping, the soliton trajectory for t > 0
is given by the characteristic,

dx
dt

= c(a(x, t), ū(x, t)), x(0) = x0, (3.28a,b)

where |x0| � 1 so that the soliton is initially well separated from the initial step in the
mean flow at x = 0.

In the present work, we consider the implications of a non-convex solitonic modulation
system (3.4) on the above soliton transmission and trapping scenarios. As described in
§ 3.1, non-convexity enters when strict hyperbolicity and/or genuine nonlinearity is lost via
one of the three conditions: f ′′(ū) = 0, f ′(ū) = c(a, ū) or ca(a, ū) = 0 for any (ū, a) ∈ A0.

In Maiden et al. (2018), positivity of the transmitted amplitude (one of a±) was proposed
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3.3. Hydrodynamic reciprocity
So far, we have assumed that the mean flow satisfies the simple wave equation ūt +
f ′(ū)ūx = 0. For step initial data (3.22), the only candidate continuous solution is a RW

ū(x, t) =

⎧⎪⎨
⎪⎩

u− x < f ′(u−)t,
( f ′)−1(x/t) f ′(u−)t < x < f ′(u+)t,
u+ f ′(u+)t < x,

(3.30)

so long as the admissibility criterion f ′(u−) < f ′(u+) holds, corresponding to expansive
initial data. As will be shown in the next section, there is a much richer variety of
dispersive mean flows generated by the mKdV GP problem when the initial data are
compressive. Thus, we need soliton–mean flow modulation theory to be flexible enough
to accommodate a wide class of mean flows.

The solitonic modulation equations (3.4), (3.5) directly apply for expansive mean flow
initial data, yielding a description of soliton–RW interaction. For compressive initial data
(3.22), rather than form a discontinuous shock solution, a DSW is formed that occupies the
space–time region A ⊂ R × (0, ∞) where the solution is described by the full system of
Whitham modulation equations for a slowly varying nonlinear periodic wave. As a result,
the Riemann invariant q and secondary invariant kp of the augmented solitonic system
(3.4), (3.5) are not conserved in A, and our arguments leading to the transmission and
phase conditions (3.24), (3.25) do not apply to the soliton interaction with the DSW mean
flow.

To address this, we invoke an important property of the dispersive conservation law
(2.1): time reversibility. A consequence of time reversibility is the continuity of the
modulation solution for all (x, t) ∈ R

2. For compressive data, we consider the solution
for t < 0 that consists of a simple wave described by (3.30), i.e. the expansive mean flow
case. Then, since q and kp are constant for all x ∈ R and t < 0, they remain constant
by continuity for (x, t) in the complement of A, outside of the oscillatory region, where
the augmented solitonic system (3.4), (3.5) remains valid. Note that for the Riemann
data (3.22), (3.23a,b), the solution remains continuous outside R

2 \ {(0, 0)}, which is
justified by taking the limit of smooth solutions. This property was called hydrodynamic
reciprocity in Maiden et al. (2018) and has been used previously in the characterisation of
DSWs for a single or pair of dispersive hydrodynamic conservation laws (El 2005). Since
the transmission and phase conditions (3.24), (3.25) hold outside the oscillatory region,
hydrodynamic reciprocity allows us to predict the transmitted amplitude and phase shift
Δ of a soliton interacting with DSW mean flows entirely within the framework of the
augmented solitonic modulation system (3.4), (3.5).

The details of the modulation dynamics for the soliton within the interior of the
oscillatory region A can, in principle, be described by a degenerate two-phase solution
(see Flaschka, Forest & McLaughlin (1980) for multiphase modulation theory of the
KdV equation). However, as we will show, this rather technical approach can be partially,
approximately circumvented by replacing f (ū) in the characteristic equation (3.13) by an
appropriate choice of the mean flow variation and effectively defining a new adiabatic
invariant q holding within A.

4. Modulation theory for the mKdV equation

As the simplest example of dispersive hydrodynamics with non-convex flux, we study the
mKdV equation (2.3). The mean flow behaviours that arise when solving (2.3) subject
to (3.22) depend on the sign of the dispersive term sgn(μ). The mKdV hyperbolic flux
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f (u) = u3 exhibits the inflection point f ′′(0) = 0 so that non-convexity affects the solutions
whenever the initial data contain an open interval including the point u = 0. For either sign
of μ, the mKdV equation allows for solitons of both polarities by the symmetry u → −u.
The linear dispersion relation is

ω0 = 3ū2k + μk3. (4.1)

The purpose of this section is twofold: (i) to obtain the augmented solitonic modulation
system (3.4), (3.5) by direct computation for the mKdV–Whitham system and (ii) to
explore the implications of the mKdV’s non-convex flux for the structure of the augmented
solitonic modulation system. But first, we need to understand mKdV’s travelling wave
solutions. In order to be self-contained, Appendix A presents a compendium of the results
on mKdV travelling wave solutions from El et al. (2017) necessary for the development
in this paper, which we briefly summarise. The mKdV equation differs from the KdV
equation in that it supports solitons of both polarities for either sign of the dispersion μ.
For μ > 0, bright soliton solutions occur when u1 → u2 and dark soliton solutions occur
when u3 → u4. For μ < 0, solitons arise when u2 → u3 with bright solitons as solutions
between u3 and u4 while dark solitons occur between u1 and u2. The amplitude–speed
relations (A6) and (A8) for bright and dark exponential solitons, respectively, can be
combined into a single relation by introducing the convention that a > 0 for bright solitons
and a < 0 for dark solitons. Then, the general formula

c(a, ū) = 1
2a2 + 2aū + 3ū2, a ∈ R (4.2)

holds, covering all cases: μ ≶ 0, dark and bright exponential solitons. Note that
this formula also includes kinks (a = −2ū, c = ū2, μ > 0) and algebraic solitons (a =
−4ū, c = 3ū2, μ < 0). From now on, we will be assuming the generalised amplitude
a ∈ R.

The system of modulation equations for the mKdV equation (2.3) was first derived in
Driscoll & O’Neil (1975) following Whitham’s original averaging procedure (Whitham
1965), and reduced to diagonal form.

A derivation of the travelling wave solutions and the respective modulation equations for
the Gardner equation (an extended version of mKdV), revealing the differences between
various modulationally stable DSW structures arising in the μ > 0 and μ < 0 cases was
performed in Kamchatnov et al. (2012) and then utilised in El et al. (2017) for the analysis
of modulated mKdV solutions in the zero-viscosity limit of the mKdV–Burgers equation.
Following El et al. (2017), the mKdV modulation system is

∂λi

∂t
+ Wi(λ)

∂λi

∂x
= 0, i = 1, 2, 3, (4.3)

where λi are Riemann invariants related to roots of the potential function Q(ū),

λ1 = 1
2 (u1 + u2), λ2 = 1

2 (u1 + u3), λ3 = 1
2 (u2 + u3). (4.4a–c)

The characteristic velocities Wi are given in Appendix B.
Applying the limit λ2 → λ3 to (4.3) and using (B5), (B6) gives the reduced diagonal

system
∂λ1

∂t
+ 3λ2

1
∂λ1

∂x
= 0,

∂λ3

∂t
+ (λ2

1 + 2λ2
3)

∂λ3

∂x
= 0.

⎫⎪⎪⎬
⎪⎪⎭ (4.5)
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Using ū = u1 = λ1 and a = u3 − u1 = 2(λ3 − λ1) (see (A5)), we can now write (4.5) as

ūt + 3ū2ūx = 0,

at + (1
2a2 + 2aū + 3ū2)ax + (a2 + 4aū)ūx = 0.

}
(4.6)

The system (4.6
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result with q2 = λ2
3. The approximate conservation of waves equation (4.9) is subject to

corrections of order k e−αk where α = π

√
2(λ2

1 − λ2
3) = π

√−a(a + 4ū)/2 as k → 0.

The solitonic modulation system (4.8) loses strict hyperbolicity when 3ū2 = ū2 + 2q2

– corresponding to f ′(ū) = c(a, ū) in the notation of (3.4) – which yields q2 = ū2, and
implying via (4.7) either

a = 0, or a = −4ū. (4.11)

As mentioned earlier, the a = 0 case corresponds to a reduction in order of the solitonic
modulation system (4.8) to the mean flow equation ūt + 3ū2ūx = 0. Strictly speaking, it
does not correspond to the loss of strict hyperbolicity as traditionally defined for Whitham
modulation systems, but it is relevant for the general tunnelling conditions (3.29a–c).

Genuine nonlinearity is lost when (4.11) holds or, alternatively, if f ′′(ū) = 0, or ca = 0,
cf (3.9), (3.10), i.e.

ū = 0 or a = −2ū ⇔ q = 0. (4.12)

In all cases, the soliton speed in terms of the Riemann invariants is given by

C(q, ū) = ū2 + 2q2 > 0, for a /= 0. (4.13)

As shown in § 3, for modulations with constant q, the wave conservation equation (4.9)
is diagonalised by the variable kp, where p(q, ū) is given by (3.16). Using (4.13) and
f ′(u) = 3u2 in (3.16), we determine p(q, ū) for mKdV solitonic modulations,

p(q, ū) = exp
(

−
∫ ū

ū0

u
u2 − q2 du

)

= |q2 − ū2|−1/2, q2 /= ū2, (4.14)

where we have chosen ū2
0 = q2 + 1 for convenience.

5. Classification of mean flows in the mKdV GP problem

The solution to the GP problem for mKdV was classified in El et al. (2017) by combining
previous work on the Riemann problem for either sign of dispersion (Chanteur & Raadu
1987; Marchant 2008) and elaborating on the GP problem classification for the Gardner
equation ut + 6uux − 6αu2ux + uxxx = 0 (Kamchatnov et al. 2012). The wave behaviour
that emerges from the GP problem depends on the sign of μ and relative sign and
magnitude of u− and u+, as shown in the classification diagram of figure 3. We refer
to the octants in this figure as regions I to VIII, counted in a counterclockwise fashion.
Owing to its universality as a model of weakly nonlinear, long dispersive waves (El et al.
2017), the mKdV equation provides a fundamental description of the GP problem for other
PDEs with non-convex flux.

RWs and DSWs solve the GP problem in certain convex and non-convex cases. DSWs
are classified as DSW+ and DSW− according to the polarity of the solitary wave generated
at one of the edges – leading or trailing, depending on the DSW orientation. In the
non-convex case, we see the emergence of additional wave structures. These occur when
the hydrodynamic flux f (u) = u3 exhibits an inflection point u = 0 within the range of
step data (2.4) so that u+u− < 0. Particularly, when μ > 0, and u− = −u+, the long-time
asymptotic solution is a kink, which is an undercompressive shock in the limit μ → 0+.
When μ < 0 and u− = −u+, the long-time asymptotic solution is a CDSW whose leading,
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III: K|RW

(a) (b)

II: RW

VII: K|RWVI: RW

IV: K|DSW–

V: DSW+

I: DSW–

VIII: K|DSW+

u+ u+ = u–

III: CDSW–|RW II: RW

u+ u+ = u–

u+ = –u–

VII: CDSW+|RWVI: RW
u+ = –u–

u–

IV: CDSW–|DSW–

V: DSW–

I: DSW+

VIII: CDSW+|DSW+
u–
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Dynamic soliton–mean flow interaction with non-convex flux

For both signs of μ, the transmission and phase conditions can be determined from
(3.24), (3.25), (4.7), (4.14) as

a+
2

+ u+=a−
2

+ u−,
k−
k+

=
√

q2− − u2−
q2+ − u2+

=
√√√√ 1

4a2− + a−u−
1
4a2+ + a+u+

. (6.1a,b)

Notably, these transmission and phase conditions are exactly the same as those for the KdV
equation ut + (u2)x = μuxxx with convex flux (Maiden et al. 2018). Although, for mKdV,
the conditions apply for both positive and negative soliton amplitudes.

The tunnelling condition (3.29a–c) fails when the characteristic speeds f ′(ū) and C(q, ū)

cross, which occurs when (see (4.11))

q2 = ū2 =⇒ a ∈ {0, −4ū}. (6.2)

Crossing through a = 0 gives the same condition as in the convex case, where for bright
solitons, a > 0 on the transmitted side implies tunnelling, and a ≤ 0 means the soliton is
trapped. For dark solitons, the inequalities must be reversed.
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Dynamic soliton–mean flow interaction with non-convex flux

Dispersion Direction Region II - RW (u+ > u− > 0) Region VI - RW (u+ < u− < 0)

μ > 0 R → L No bright soliton solutions Tunnelling if a+ > acr = 2(u− − u+)

μ < 0 L → R Tunnelling if a− > acr = 2(u+ − u−) Tunnelling if a− > acr = −2(u+ + u−)

Table 1. Results for the bright soliton tunnelling problem through RWs; R → L means that x0 = x+ and the
soliton propagates from right (R) to left (L), otherwise x0 = x− (L → R).

where D and E are obtained by continuity of x(t)

D = 3
2x2/3

+ (2u2
+ − 2q2)1/3 (7.4)

E = x+

√
u2+ − q2

u2− − q2
. (7.5)

The phase shift is Δ = E − x+, which matches the condition given by (6.1a,b).
A similar analysis can be carried out for each region in figure 3 to determine the

tunnelling criterion. We summarise the remaining results without detailing the analysis for
each case in table 1 for either sign of μ in regions II and VI. Note that for μ < 0 in region
VI, the tunnelling criterion is different than the condition that a+ > 0. This is because
there are cases for valid initial soliton amplitudes a− where the amplitude crosses −4ū
during interaction with the RW, causing the soliton to become trapped. In the limit t → ∞,
the trapped soliton limits to an algebraic soliton moving with the mean flow velocity 3ū2.

Figure 5 illustrates the loss of strict hyperbolicity when μ < 0 for non-zero amplitudes
by depicting the wave curves a(ū)
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u+ u− a+ Tfinal a− (pred) a− (num) Δx/x− (pred) Δx/x− (num)
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Dynamic soliton–mean flow interaction with non-convex flux

8.1. Soliton–kink interaction
A kink solution to the GP problem when μ > 0 is realised when u+ = −u−. To be definite,
we assume that u− < 0. The kink velocity u2− = u2+ is slower than the soliton velocity
for any amplitude so interaction happens from left to right with x0 = x− < 0. By the
soliton existence conditions (A7), when u− < 0, we must initialise with a bright soliton
(a− > 0) on the left side. Since bright solitons cannot exist on the right side of the kink
where u+ > 0, we expect that the soliton polarity undergoes a switch as a result of kink
interaction in order for the soliton to be a valid solution. To determine the transmitted
soliton amplitude, we observe that, under the quadratic transformation (B3), the mKdV
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u− u+ a− tfinal a+ a+ (num) Δx Δx (num) Δx/|x−| (num) Δxkink

−1 1 0.5 200 −0.5 −0.4991 0 1.6530 0.0331 −2.3438
−1 1 1.0 200 −1.0 −1.0000 0 2.1484 0.0430 −3.8086
−1 1 1.5 500 −1.5 −1.4999 0 3.0273 0.0605 −5.8594
−2 2 1.5 50 −1.5 −1.4988 0 0.9766 0.0195 −1.6113
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Direction
Region III - kink|RW

(u+ > −u− > 0)
Region IV - kink|DSW

(u− < −u+ < 0)
Region VII - kink|RW

(u+ < −u− < 0)
Region VIII - kink|DSW

(−u− < u+ < 0)

R → L No soliton solutions No soliton solutions Tunnelling through RW if a+ >

−2u− − 2u+, trapped to the right of
the kink

Tunnelling through DSW always,
trapped to the right of the kink

L → R Tunnelling through kink, polarity
flips, trapped to the left of the RW

Tunnelling through kink, polarity
flips, trapping in DSW if a− <

2u+ − 2u−

No soliton solutions No soliton solutions

Table 7. Results for μ > 0 with bright solitons interacting with hybrid mean flows.
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Numerics
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Figure 14. Kink–DSW interaction with μ = 1, a+ = 1; x+ = 150, u− = −1 and u+ = −0.5. (a) Initial
condition. (b) Configuration at intermediate time t = 50. (c) Configuration at t = 250. (d) Space–time contour
plot of solution with kink characteristic (dashed). The predicted a− is 2 and the predicted Δ is -75. The
numerical solution gives a− = 2.0022 and Δ = −74.56 at t = 250.

Again for DSWs, interaction with the kink causes the DSW to switch polarity as seen
in the numerical experiment of figure 14. These polarity switches are only possible due to
non-convexity. The kink–DSW trajectory is given by (9.1a,b), where the DSW mean flow
ū = ū(x/t) is determined by (5.4), (5.2a–c) and (5.3a,b).

Note that kink–kink interaction is not possible as multiple kinks will co-propagate.

10. Generalisation to arbitrary soliton–convex mean flows

We have described soliton tunnelling interactions specifically with mean flows that emerge
from a Riemann step-type initial condition. However, the tunnelling problem can be
generalised to determine the phase shift and amplitude of a soliton that tunnels through
an arbitrary mean hydrodynamic flow. If tunnelling occurs, only the far-field mean flow
conditions u− and u+ are needed to predict the transmitted soliton amplitude. The phase
shift can be calculated by approximating the initial mean flow ū(x, 0) with a series of step
functions and taking a limit that results in the Riemann integral

Δ =

⎧⎪⎪⎪⎪
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(la Forgia et al. 2020). When reflections occur due to additional topographic features,
such large-scale mean flows may encounter solitons of different speeds (la Forgia et al.
2020), leading to the type of soliton–mean interaction described here. Along with the
mKdV equation, internal waves can be modelled by the Gardner equation that combines
KdV and mKdV hydrodynamic fluxes (Grimshaw 2002; Helfrich & Melville 2006). The
generalisation of our results to the Gardner equation is straightforward. We stress that
our approach does not make use of the integrability of the mKdV equation, so can be
applied to a non-integrable, non-convex dispersive hydrodynamics. In particular, a new,
intriguing non-convex scalar model has recently been derived for the contour dynamics
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Appendix A. The mKdV travelling wave solutions

The mKdV travelling wave solutions u = u(η), η =
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u1

(a) (b)

u2 u3

u4

u4

u3u2

u1

Figure 16. Potential curve Q(u) of the nonlinear oscillator equation (A1). Travelling wave solutions exist in
the shaded regions. (a) μ > 0 and (b) μ < 0.

with speed U = ū2, which matches the classical shock speed determined by the
Rankine–Hugoniot condition.

(ii) For μ < 0, travelling wave solutions can occur between u1 and u2 or between u3 and
u4. Between u3 and u4, the travelling wave solution is

u = u3 + (u4 − u3)cn2(θ, m)

1 + u4 − u3

u3 − u1
sn2(θ, m)

, (A11)

with m = m− = (u4 − u3)(u2 − u1)/(u4 − u2)(u3 − u1). The wavenumber is given by the
same formula (A4). When u3 → u2 (m− → 1) the solution becomes a bright exponential
soliton with amplitude a = u4 − u2 and background ū = u2

u = u2 + u4 − u2

cosh2 θ + u4 − u2

u2 − u1
sinh2 θ

. (A12)

This soliton solution travels according to the same soliton amplitude–speed relation (A6)
as in the case μ > 0. Due to the root ordering, valid bright soliton amplitudes for the
solution to exist are given by

a > max(0, −4ū), (A13)

with no constraint on the background ū.
For μ < 0, there is a special type of travelling wave solution expressible in terms of

trigonometric functions. Again, these solutions occur either between u1 and u2 or between
u3 and u4 but under the additional constraint that u3 = u4 in the first case and u1 = u2 in
the second case. For u3 ≤ u ≤ u4, u1 = u2 the solution is given by

u = u3 + u4 − u3

1 + u4 − u1

u3 − u1
tan2 θ

. (A14)

The nonlinear trigonometric solution (A14) has no analogue in KdV theory. When u3 →
u2 = u1 ≡ ū, the solution (A14) becomes an algebraic bright soliton described by

u = u1 + u4 − u1

1 + (u4 − u1)2η2/4
, (A15)

with amplitude a = u4 − u1 = −4ū and travelling at speed U = 3u2
1 = 3ū2, which is the
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