Department of Applied Mathematics PROBABILITY AND STATISTICS PRELIMINARY EXAMINATION January 2020

Instructions:

Do two of three problems in each section (Prob and Stat).	Prob
Place an X on the lines next to the problem numbers	1
that you are NOT submitting for grading.	2 3
Do not write your name anywhere on this exam.	Stat

- (b) What's the probability that after a very long time the machine is working? Explain!
- (c) If the machine is currently working, what's the probability it continues doing so without interruptions during the next *t* units of time? Explain!
- (d) If the machine is currently working, what's the probability that it is working *t* units of time later? Justify!

Problem 3.

Let r_0, r_1, r_2, \ldots be real numbers such that $r_i > 0$, and $r_i = 1$.

Consider a discrete-time homogeneous Markov chain $X = (X_n)$

(d) It is well known that Y_1 , as the minimum of *n* exponentials with rate , has again an exponential distribution but with rate *n*. One can show that Y_2 has the same distribution as $E_1 + E_2$, where E_1 and E_2 are independent with $E_1 = exp(rate = n)$ and $E_2 = exp(rate = (n - 1))$

(b) Suppose that X_1, X_2, \ldots, X_n is a random sample from the distribution with pdf

$$f(x;) = x^{-1} I_{(0,1)}(x).$$

Use part (a) to derive an approximate 100(1 -