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Abstract A new model, dubbed the MRQSphere, provides a multiresolution rep-
resentation of the gravity eld designed for its estimation. The multiresolution rep-
resentation uses an approximation via Gaussians of the solution of the Laplace’s
equation in the exterior of a sphere. Also, instead of the spherical harmonics, vari-
ations in the angular variables are modeled by a set of functions constructed using
quadratures for the sphere invariant under the icosahedral group. When combined,
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addition, instead of the spherical harmonics, we model variations in the angular
directions by an alternate set of functions constructed using quadratures for the
sphere invariant under the icosahedral group. This paper presents an initial proof
of concept to unweave the estimation problem from its current reliance on the
spherical harmonics and the expansion of the gravity potential via the inverse
powers of the radial variable.

When estimating the gravity eld of a primary body, it is important to stage
the estimation in a natural manner. In such a procedure, one would like to rst
obtain the low spatial frequencies of the model and, then, gradually higher spatial
frequencies as we approach the body. The classical representation of the grav-
ity potential via the inverse powers of the radial variable is ill-suited for such an
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problems for using the spherical harmonics models. As seen in Fig. 1 (generated
from NEAR laser range nder results (Zuber et al, 2000)), the asteroid 433 Eros
is roughly ellipsoidal in shape. For this reason, the ellipsoidal harmonics model is
more appropriate than the spherical one. Results indeed demonstrate the advan-
tages of the ellipsoidal harmonics gravity model (Garmier et al, 2002). For both
the spherical and ellipsoidal harmonics models, the partial sum diverges for points
within the circumscribing sphere (or ellipsoid), thus limiting the minimum valid
altitude. Unfortunately, not all asteroids are ellipsoidal and, thus, other gravity
representations suited for a more-or-less arbitrary shape are desired.

Fig. 1 An isometric view of the asteroid 433 Eros.

The goals of this paper are to introduce the new model and demonstrate its
estimation capabilities. We accomplish this by applying the model to the asteroid
433 Eros, using the NEARI15A gravity model (Konopliv et al, 2002) derived from
observations of the NEAR satellite. We start by presenting the MultiResolution
representation and Quadratures for the Sphere (MRQSphere) model. This includes
a description of the mathematical tools employed in de ning the model, and their
combination to create the model, and the speci c choice of model parameters used
in the paper. We then de ne the estimation method and present results from a
simulation study. Finally, we provide conclusions and describe additional work
required for its practical implementation.

2 MRQSphere Model

The MRQSphere model combines two recently developed mathematical tools to
provide a multiresolution representation of the gravity eld, i.e. a model with a
resolution that varies with altitude. One of these tools approximates the radial
decay of the gravity eld using a sum of Gaussians, while the second one employs
interpolation on the sphere to represent the angular variations. Using these tools,
we evaluate a function on each one of a collection of spheres, or shells, and combine
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where

Vn( ) ) = > Pn;m[Sin ](Cn;m cosm -+ Sn;m sinm ): (3)
m=0
Instead of using the representation in Eq. 3, we want to represent Vi using its
values on the sphere. For this purpose, we use the reproducing kernel (see Ahrens
and Beylkin (2009)). Let Py be the space of spherical harmonics of maximum
degree and order N. The reproducing kernel

N
2 po( g (4)

Kn(C 9
n=0
has the property that for any function f in Py, we h
z

f()= _Kn(  Of(f0
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(a) 2N=14, 72 Points (b) 2N=30, 372 Points

Fig. 2 Sample quadratures for the sphere for di erent degree models

Fig. 3 Sample plots of the reproducing kernel Ky as a function of the angle between the
vectors and ° for various degrees N

where P,E,l;o) is the Jacobi polynomial with =1 and =0. To simplify notation

and prevent confusion of P,f,l;o) with the Legendre polynomials Py, we denote

Kn()=PFO() = SL k() ©)
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In our approach we estimate functions Z; () directly, thus avoiding any use of the
spherical harmonics when evaluating the model. This Cartesian representation
also eliminates any singularity at the poles when evaluating the acceleration. We
note that, for a given accuracy, the exponential cuto in Equation 22 allows us
to predict the degree of the subspace of spherical harmonics for the functions Z;
and, thus, choose the appropriate number of quadrature nodes for estimation. We
also note that, as described in Beylkin and Monzon (2010), the number of terms
in Equation (21) depends only weakly on the required resolution and is relatively
small. Fora xed , only a few terms in Equation (21) contribute to the potential.

.
N
L)

(a) Shell contributions (n=2) (b) Shell degree contribution

Fig. 5 The rst gure illustrates the contributions of the di erent shells to the function Gp.;
(h = 0:5) with variations in orbit radius (in units of Rg), while the second gure demonstrates
the contribution of gravity degree n for a given shell

In Fig. 5, we plot the terms of the series in Egs. 19 and 22 with h = 0:5. As
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Table 2 Shells required at given radii (accurate to 10 5)

Range (in Rg) Jmin  Jmax

Above 33.963085 -5 0
33.963085 - 17.221399 -5 1
17.221399 - 10.223156 -5 2
10.223156 - 6.437202 -5 3
6.437202 - 4.578281 -5 4
4578281 - 3.412891 -5 5
3.412891 - 2.702480 -5 6
2.702480 - 2.244688 -5 7
2.244688 - 1.925941 -5 8

Fig. 6 Precision (in units of 10 19) of the approximation by Gaussians of ~ ("*1) using shells
-5 through 1 at a radius of 17.2214 Rg

In Fig. 6 we illustrate the precision of approximating  ("*% using Gaussians
with the parameters shown in Table 1. We see in this gure that, unlike at the
other altitude ranges listed in Table 2, the corresponding shells at slightly above the
radius 17.221399 barely meet the precision requirement of 5 10 °. Thisin uences
future results, speci cally, the precision of the MRQSphere model as the radius
of decreases towards 17.22 Rg. The upper boundary for including shell 2 may be
changed to avoid this phenomenon but we have not done so intentionally

With the subset J now speci ed, the shell degrees, and thus the number of
quadrature nodes required, may be determined. We select the number of terms
in Z; to achieve a relative accuracy of 7 signi cant digits and provide the result-
ing values in Table 3. Quadratures on the sphere are currently available only for
particular degrees, thus for a given j we use the minimal number of nodes that
guarantees proper integration. We denote the corresponding degree as nmax. Ad-
ditionally, we place a limit of degree 15 on the shells given that the NEAR15A
model is 15 15.
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Table 3 Required gravity eld degree (nmax) and the number of quadrature nodes for each
shell

j21J Nmax M j21J Nmax M
-5 4 32 2 14 312
-4 4 32 3 15 372
-3 4 32 4 15 372
-2 7 72 5 15 372
-1 7 72 6 15 372
0 9 132 7 15 372
1 11 192 8 15 372

2.5 Baseline Performance

To provide a basis of comparison, and gain a more thorough understanding of the
ideal performance of the MRQSphere model used for this study, we perform a set
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A comparison of the MRQSphere model accelerations with those of the spher-
ical harmonics model is provided in Fig. 7. As the radius decreases, the precision
improves. For a xed , which controls the approximation via Gaussians, the num-
ber of accurate digits in Eq. 19 increases for lower altitudes. As the radius decreases
towards 17 Rg
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Fig. 9 Relative accuracy of the Laplacian (r20) of the idealized MRQSphere model when
compared to the maximum diagonal element of the variational equation matrix, with the gure
on the right illustrating the distribution of signi cant digits with radius

Fig. 10
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Fig. 11 Summary of 3D RMS orbit propagation errors using the baseline MRQSphere model
for Eros.
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Fig. 13
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Sphere model. We note that equatorial orbits within approximately 2 Rg in radius
correspond to the regions of instability derived in Scheeres (2002).
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where the r r matrix S’ contains the non-zero singular values and r is the numeric
rank of H. We assume that singular values below a certain threshold are set equal
to zero. The pseudoinverse of H is calculated using SVD, and solutions of Eq. 29
may be expressed as

st 1p T

R=V 0 0W y: (34)

For the weighted least squares using SVD, the solution is written as
pP—
=V w' B ly; (35)

where
Po— T
B 1H=V'sw: (36)

The state-error covariance matrix, E[(R x)(® x)'], where x is the true state,
provides some statistical information on the quality of the solution R. In the case
of the least-squares algorithm with SVD, it may be shown that (e.g., see Ahn,
1996)

st 2

0 o vT: 37)

E[R )R X)']=V

3.2 Estimation Process

Missions to bodies beyond Earth orbit often utilize a statistical Iter, usually a
square-root information Iter (SRIF), to estimate the satellite position, gravity

eld, and other parameters using radio science and other observations available.
To simplify the gravity recovery process for this proof of concept, we only estimate
the terms of the gravity eld. We assume the satellite state is known, with mea-
surements of the gravity potential provided with some accuracy. Furthermore, we
only estimate the Z; values for a single shell at a time as we approach the asteroid.
Thus, our estimated state vector is

2 przj( ) 3
g P2z ( 2) z
X = : (38)
IDWZj( M)

where M is the number of nodes for a given shell. The reason for the ij factor
wib® & exlals5 064 d( fhe) 36 (13 P6-9BTH] 16&263T|d JE)T 258 9-2H THH] (VB 17.6964T el )HF3N£E23 B-366¢%5-18)ipd2 0 Td
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MRQSphere model starts with the initial range of shells -5 through -1, we must
assume an a priori estimate of these shells is available. Section 3.4 discusses how
this may be accomplished.
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gravity eld. We note that these trajectories are independent of those used in the
orbit propagation tests of Section 2.5. Using the NEAR15A model, we evaluate
the potential at points on these orbits to generate the observations Uj. Nine sets of
observations are generated, one each for the range of orbit radii in Table 2. Thus
we have one set of observations for each of the shells indexed from 0 through 8.
We propagate orbits long enough to provide (roughly) complete coverage of the
gravity eld, i.e. groundtracks overlay the full surface of the asteroid, and sample
the orbit in 5 minute increments. The initial sidereal time of the asteroid was 0
with a rotation rate of 3.3116598 10 “ rad/s.

3.3 Estimated Gravity Field Redistribution

Since the shells, as de ned by Gaussians, overlap, the estimation process does not
control how a contribution of a particular degree n in uences the model. Thus,
estimated functions Z; may deviate from their de nition in Eq. 22. To match the
estimated function Z; to that de nition, we use projectors onto the subspace of
the spherical harmonics.

As mentioned in Section 2.1, the reproducing kernel in Eq. 5 is essentially a
projector. However, we now wish to create the discretized form of this projection
operator using the quadrature nodes. Let us consider a function f in the subspace
Pn and the kernel Km, where m  n. By multiplying both sides of Eq. 6 by " wj,
we have

N
PWitm( )= Cwikm( i )PWEWFa( ) (42)
j=1

where the number of nodes M is su cient to discretize Eq. 6 exactly. The matrix
Km, with elements pWiKm( i j)ij, is a projector on the subspace Pm from
the subspace Pn. In other words, this projector provides a means for generating
values at the nodes of the lower degree function fy, using values at the same nodes
of the higher-degree function fn. We note that the eigenvalues of the Km matrix
are either 1 or 0. The inclusion of ij in Eqg. 42 is the reason we used these factors
in Eq. 38.

We now describe a method for using these projectors to properly distribute
the gravity eld among the shells of the MRQSphere model. First, we select a
shell with index j and associated quadrature nodes at | (usually the last shell
estimated), which models the function Z; of degree n. Next, we evaluate the cur-
rently estimated potential O( ;J = fjmin;:::;Jg) at the nodes of the selected
shell j. In this case, is the lowest valid radius for the model using only shells
Jmin through j. Applying the projector, we generate the values pWiUm( i) at
each of the quadrature nodes, where Um( j) refers to the potential of degree m.
We perform this operation for each degree m = 2;:::;N 1. Rearranging Eq. 2
and multiplying by pWi, we have

(@) 1
m<1
Pwivin( 1) = @Pwum( 1)) e+ PRV, A ML
p=2
= (Pwium( ) CWilm 2 ) ™ 43)
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Thus, after mapping the full estimated gravity potential to the lower degree sub-
spaces, we now have a representation of Vm( ) form=2;:::;N 1. Using

Ve ) M350(he) —351.(D29(B O TAT7GD TAT7m-2.483 ) TA(B6CHT72
m( k) =






A Multiresolution Model for Small-Body Gravity Estimation 23

Fig. 17 Precision of the estimated MRQSphere model with the spherical harmonics model,
de ned by the number of common digits between them, with the gure on the right illustrating
the distribution of accuracy with radius

curacy of 4 or 5 digits yields a model accurate to just as many digits. The decrease
in precision for low altitude points, i.e. points requiring the evaluation of shell 8,
is a result of reduced accuracy for the nal shell estimated. If the estimation pro-
cess had been truncated with shell ve and only points above 4.6 Rg were tested,
results demonstrate this downward trend would still be seen. These results have
not been provided in the interest of brevity.

Figure 18 provides the relative accuracy of the Laplacian of the estimated
model. Unlike the acceleration vector, there is a small radial dependency on the
accuracy of the Laplacian, especially as the radius decreases towards 17:22 Rg.
Like the idealized model results of Fig. 9, the ability of the Laplacian to satisfy the
constraints of potential theory depends on the accuracy of the model. In this case,
an MRQSphere accurate to 5 digits yields a Laplacian with a relative accuracy of
approximately 10 °.

Figure 19 illustrates the spatial distribution of errors in the estimated MRQ-
Sphere model. Errors do not correspond to regions of high gravity variability, but
are more coupled with the distribution of measurements over the surface of the
asteroid. In Fig. 20, we process observations for shell 8 with large regions deprived
of measurements. Peak anomalies on the plot correspond to regions with no obser-
vations and have doubled in magnitude. Regions with observations exhibit results
mostly comparable to those in Fig. 19. Of course, this is an issue with spherical
harmonics gravity model as well. A primary example of this phenomenon is esti-
mation of the lunar gravity eld where little is known about the Moon’s far side
gravity terms (Konopliv et al, 2001).

In Figure 21, we provide the degree variances of the NEAR15A model, the nom-
inal and estimated MRQSphere models, the di erences between the MRQSphere
models and the NEAR15A, and the estimated error in the NEAR15A model. To
generate the variances for the nominal MRQSphere model, we evaluate the poten-
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Fig. 18 Relative accuracy of the Laplacian (r20) of the estimated MRQSphere model when
compared to the maximum diagonal element of the variational equation matrix, with the gure
on the right illustrates the distribution of signi cant digits with radius

Fig. 19 Gravity anomalies for estimated h=0.425 MRQSphere model at R=2Rg

tial at 2,000 random points with a radial distance of 2 Rg. Given the resulting
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Fig. 22 Summary of 3D RMS position and velocity errors for orbits propagated with the
estimated MRQSphere model versus the spherical harmonic model.

term dominates and gravity perturbations attenuate. However, a 1 m 3D RMS
error is less than the 5 m orbit determination error for the NEAR mission satellite
at comparable altitudes.

4 Conclusions and Future Work

In this paper, we de ned the MRQSphere model and provided its example rep-
resenting the gravity eld of the asteroid 433 Eros. We used this example to de-
scribe performance of the model in the idealized situation. The construction of the
MRQSphere model is dependent on several user-de ned tuning parameters, most
notably the accuracy of the Gaussian approximation of inverse powers of distance
. This approximation allows for the multiresolution representation of the gravity
eld and leads to the de nition of the shells to account for its angular variations.
Other presented results include the derivation of the acceleration vector and the
variational equations within the MRQSphere model.
This paper also demonstrated the estimation capabilities of the MRQSphere
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model was estimated with accuracies comparable to the measurements provided.
Like the spherical harmonics model, large regions without measurements yielded
a reduced accuracy in the total gravity eld.

The two major goals for future work are: (1) integrating the MRQSphere model
with a more traditional orbit determination scheme using a SRIF, and (2) altering
the representation for evaluation within the circumscribing sphere. Integration of
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with
K
0Ko() _ 0 1)
@
@K1() _ 3
= - 52
5 5 (52)
The resulting acceleration vector, with terms expressed using matrix operations, is
r=ro . , ' o~
X 2 2_ £ f« K
- _ e (In )* §=2 7]2(“.] )Zj(f‘) r+ @7 lej( I)M (53)
R j2z r er 1=1 @
where

of _ er T _1
@r_ @r Tr
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