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model has also been extended to scale-free uniform hypergraphs.29

The fact that the network SIS model with more general higher-
order interactions results in bistability has been proven rigorously
in Ref. 26. However, so far, there is no general theory explaining
how heterogeneity and correlations in the structure of higher-order
interactions affect the onset of bistability.

In this paper, we present and analyze a degree-based mean-
field description of the dynamics of the SIS model in networks with
higher-order interactions. To describe higher-order interactions, we
consider the SIS model on a hypergraph, formed by a set of nodes
and a set of edges of multiple sizes (so that edges of size larger than
two represent higher-order interactions). Our formulation allows us
to consider heterogeneous structures in the organization of the edges
of a given size and correlations between the structure of edges of
different sizes. Using the illustrative case of networks with edges of
sizes 2 and 3, we derive conditions for the appearance of bistabil-
ity and hysteresis in terms of moments of the degree distribution of
the pairwise interaction network. We find that the onset of bistabil-
ity and hysteresis can be suppressed by heterogeneity in the pairwise
interaction network and promoted by positive correlations between
the number of pairwise and higher-order interactions a node has.
We also consider the effect of healing by higher-order interactions
(a “hipster effect”).

The structure of the paper is as follows. In Sec. II, we present
our hypergraph and contagion models. In Sec. III, we derive a
mean-field description of the model and apply it to various illus-
trative cases. In Sec. IV, we study how model parameters affect the
onset of bistability. Finally, we discuss our results and present our
conclusions in Sec. V.

II. MODEL

In this section, we present our hypergraph and contagion mod-
els. Our model consists of SIS contagion spreading on a hypergraph
via pairwise and higher-order interactions. While we focus on the
SIS epidemic model, we note that our formalism could be extended
to other models. In the context of epidemic spreading, pairwise
interactions could represent, for example, face-to-face interactions
leading to contagion via viral droplets, while higher-order interac-
tions could represent, for example, contagion via the shared spaces
by a group. In the context of opinion dynamics, higher-order conta-
gion could model, for example, a majority-vote process common in
caucusing. In the following, we provide details about the hypergraph
model representing the higher-order interactions and the contagion
models that we consider.

A. Hypergraph model

We consider a population of N nodes labeled i = 1, 2, . . . , N
coupled via undirected hyperedges of sizes m = 2, 3, . . . , M, where
a hyperedge of size m is a set of m nodes, {i1, i2, . . . , im}. We define
the mth order degree of node i, k(m)

i , as the number of hyperedges of
size m to which the node belongs, and its hyperdegree as the vector
ki = [k(2)

i , k(3)
i , . . . , k(M)

i ]. The 2nd order degree of a node cor-
responds to the number of pairwise connections of the node,
while higher-order degrees measure the node’s participation in
hyperedges of larger sizes. Figure 1 illustrates a hypergraph with

FIG. 1. Illustration of a hypergraph. Infected nodes (red) infect a healthy node
(gray) via hyperedges of sizes 2 and 3 with rates β2 and β3, respectively.

hyperedges of sizes 2 and 3, which, for simplicity, we will henceforth
denote as links and triangles, respectively.

Extending degree-based descriptions of epidemic spreading on
networks,30,31 we will develop a mean-field theory for the propa-
gation of epidemics based on the assumption that nodes with the
same hyperdegree have the same statistical properties. For this pur-
pose, we assume that the number of nodes with the hyperdegree
k, P(k), is given and that the probability that nodes with hyper-
degrees k1, k2,. . . , km belong to a hyperedge of size m is given
by fm(k1, k2, . . . , km). This assumes that the statistical structure of
the network is completely described by the hyperdegree distribu-
tion P(k) and the connection probabilities fm(k1, k2, . . . , km). While
this restriction rules out the possibility of assortative mixing by
other node properties, it is straightforward to extend our formal-
ism to include other node variables. Note that counting the num-
ber of hyperedges of size m in two different ways, the connection
probabilities must be normalized such that

1

m!

∑

k1 ,...,km

P(k1), . . . , P(km)fm(k1, k2, . . . , km) =
1

m

∑

k

k(m)P(k).

(1)

For example, for the configuration model for networks without
higher-order interactions (i.e., only hyperedges of size 2, M = 2),
the hyperdegree of a node is just the number of links, k = k, con-
necting that node to other nodes and the connection probability is
f2(k, k′) = kk′/(N〈k〉), where 〈k〉 =

∑N
i=1 ki/N =

∑
k kP(k)/N. For

networks with hyperedges of sizes 2 and 3, f3(k1, k2, k3) is the prob-
ability that three nodes with degrees k1, k2, and k3 are connected
by a hyperedge of size 3. The configuration model for hypergraphs

Chaos 30, 103117 (2020); doi: 10.1063/5.0020034 30, 103117-2

Published under license by AIP Publishing.

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0020034/14628806/103117_1_online.pdf

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

and its associated statistical properties has been studied in Refs. 32
and 33.

This framework allows us to study networks with hetero-
geneously distributed higher-order interactions and correlations
between nodal degrees of different orders. In addition, it allows us
to treat the case in which nodes belonging to a triangle are not
necessarily connected by links, as is assumed in simplicial complex
models.24 We will study how the structure of higher-order interac-
tions modifies some of the properties of epidemic spreading on net-
works with exclusively pairwise interactions (i.e., hyperedges of size
2 only), on which epidemic spreading has been studied extensively.1

B. Contagion model

Now, we describe the contagion models we will study. As men-
tioned above, we will focus on the SIS model, but other epidemic
models could be treated using the same formalism. We assume that
at any given time t ≥ 0, each node can be in either the susceptible
(S) or infected (I) state. Infected nodes heal and become susceptible
again at rate γ . Now, we specify how hyperedges mediate the conta-
gion process. In general, the probability of contagion by a hyperedge
could be a function of the number of infected nodes in the hyperedge
(e.g., as in Ref. 27). Here, we will consider the two extreme cases
where contagion occurs if all the other members of the hyperedge
are infected or if at least one member of the hyperedge is infected.
More precisely, in the collective contagion case, a susceptible node
that belongs to a hyperedge of size m gets infected at rate βm if all
the other members of the hyperedge are infected; in the individ-
ual contagion case, the node gets infected at rate βm if at least one
member is infected. While we will analyze these two cases only, in
principle, one could treat the case in which at least j other nodes of
the hyperedge need to be infected for contagion to occur using the
techniques presented below. This case corresponds to a quorum of
size j, and there is evidence for such effects in collective behavior.34,35

For hyperedges of size 2, i.e., links, both cases reduce to the usual
contagion via pairwise interactions. The social contagion model of
Ref. 24 corresponds to the collective contagion case. The contagion
processes are illustrated in Fig. 1 for hyperedges of sizes 2 and 3.
Table I summarizes the notation and variables used.

TABLE I. Relevant notation.

Variable Definition

N Number of nodes
k(m) Number of hyperedges of size m a node

belongs to
k = [k(2), . . . , k(M)] Hyperdegree
P(k) Number of nodes with hyperdegree k
γ Rate of healing
βm Rate of infection by a hyperedge of size m
fm(k1, k2, . . . , km) Probability that m nodes form a hyperedge

of size m
xk Fraction of nodes with hyperdegree k that

are infected

https://aip.scitation.org/journal/cha
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Now, we study the uncorrelated case where f3(k, k1, k2)

= 2〈k〉/N2. In this case, Eq. (6) can be rewritten in terms of the
fraction of infected nodes,

U =
∑

k

P(k)xk

N
, (12)

and the fraction of infected links V. In terms of these quantities,
Eq. (6) reads

dxk
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the approaches proposed in Refs. 28 and 36 could be used to
obtain better approximations. The qualitative aspects of interest,
captured by the mean-field equations and the numerical solution of
Eqs. (15) and (16), are the following. For small values of β3 [Fig. 3(a),
β3 = 0.0194], the bifurcation from the state with no infection
(U = 0) to the infected state (U > 0) is continuous. However, for
larger values of β3 [Fig. 3(c), β3 = 0.0582], the transition is dis-
continuous: as β2

https://aip.scitation.org/journal/cha
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FIG. 5. Bistability index B as a function of β3 for (a) P(k) constant for 50 < k

< 150 and 0 otherwise, (b) P(k) ∝ k−4 for 67 < k <

https://aip.scitation.org/journal/cha
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FIG. 6. Phase diagram for the degree-correlated, individual contagion model with
parameters γ = 2 and P(k) ∝ k−4 when 67 < k < 1000 and 0 otherwise.

which has different first-order behavior than the degree-correlated
case. Inserting this expression into Eqs. (7) and (12), we obtain

U =
1

N

∑

k

P(k)(β2kV + 2β3〈k〉U − β3〈k〉U
2)

γ + β2kV + 2β3〈k〉U − β3〈k〉U2
, (26)

V =
1

N〈k〉

∑

k

kP(k)(β2kV + 2β3〈k〉U − β3〈k〉U
2)

γ + β2kV + 2β3〈k〉U − β3〈k〉U2
. (27)

Linearizing, we obtain the system

δU =
〈k〉β2

γ
δV +

2〈k〉β3

γ
δU, (28)

δV =
〈k2〉β2

〈k〉γ
δV +

2〈k〉β3

γ
δU. (29)

Solving this system and canceling the zero solution, we find that the

https://aip.scitation.org/journal/cha
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hyperedges where

fm(k, k1,
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we find conditions under which there are at least two solutions to

h(V, β2) =
1

N〈k〉

∑

k

kP(k)(β2k + β3kV)

γ + β2kV + β3kV2
− 1 = 0. (35)

First, note that h(0, β2) = β2/β
c
2 − 1 and that h(1, β2) < 0.

Therefore, if ∂h
∂V

(0, βc
2) > 0, then by continuity, there will be at least

two solutions for β2 less than, but sufficiently close to, βc
2. This

condition gives

βc
3

γ
=

〈k3〉〈k〉2

〈k2〉3
, (36)

which works well in predicting the onset of bistability for the degree-
correlated case. The relative error with respect to the value obtained
from directly solving Eq. (10) for all distributions tested is less than
2% (not shown).

The analysis for the degree-correlated case was based on the
behavior of h(V, β2) near V = 0. For the uncorrelated case, however,
we find that a saddle-node bifurcation can occur at positive values of
V, and it is necessary to expand Eqs. (15) and (16) to higher order.

Expanding Eqs. (15) and (16) to second order, setting
β2 = βc

2 = γ 〈k〉/〈k2〉, and subtracting the two equations yield

U =
〈k〉2

〈k2〉
V +

(
〈k〉〈k3〉

〈k2〉2
−

〈k〉2

〈k2〉

)
V2, (37)

which, when evaluated in

h(V, β2) =
1

N〈k〉

∑

k

kP(k)(β2kV + β3〈k〉U
2)

γ + β2kV + β3〈k〉U2
− V = 0 (38)

and expanded to fourth order, again setting β2 = βc
2, yields

h(V, βc
2) = (a0 + a1V + a2V

2)V2, (39)

where

a0 = −
〈k〉〈k3〉

〈k2〉2
+

〈k〉5β3

〈k2〉γ
, (40)

a1 =
〈k〉2〈k4〉

〈k2〉3
− 4

〈k〉5β3

〈k2〉2γ
+ 2

〈k〉4〈k3〉β3

〈k2〉3γ
, (41)

a2 = −
〈k〉3〈k5〉

〈k2〉4
+ 5

〈k〉5β3

〈k2〉2γ
+ 3

〈k〉6〈k3〉β3

〈k2〉4γ
− 6

〈k〉4〈k3〉β3

〈k2〉3γ

+
〈k〉3〈k3〉2β3

〈k2〉4γ
−

〈k〉10β2
3

〈k2〉4γ 2
. (42)

For continuous transitions to epidemics, there is only one equi-
librium for V at β2 = βc

2, namely, V = 0. The onset of bistability
occurs when a second solution appears, which corresponds to the
first appearance of a root of (39) in the interval (0, 1). Such a root
can appear at V = 0 in a transcritical bifurcation or at V > 0 as a pair
of roots in a saddle-node bifurcation. A pair of roots appears when
the discriminant of the quadratic equation a0 + a1V + a2V

2 = 0 is
zero. However, this bifurcation is physically meaningless if it occurs
for values of V outside the interval [0, 1]. Therefore, we impose
the constraint that the value of β3 found by solving a2

1 − 4a0a2

= 0 must satisfy the inequality 0 ≤ −a1/2a2 ≤ 1. In addition, we

FIG. 9. Relative error in the value of βc

3/β
c

2 obtained from Eq. (43) compared
with the numerically obtained value shown in Fig. 8(b).

note that because of continuity, the sign of the a2 term must be
negative because otherwise, ∂h

∂V
(0, βc

2) > 0 and the bifurcation has
already occurred. The transcritical bifurcation occurs when a root
crosses from a negative value to a positive value, which occurs when
one root of a0 + a1V + a3V

2 = 0 is V = 0, implying that a0 = 0
and βc

3 = γ 〈k3〉/〈k〉4. Using these conditions, we can construct a
piecewise definition of βc

3

βc
3 =





Solve(a2
1 − 4 a0 a2 = 0), a2 < 0, 0 ≤ −

a1

2a2
≤ 1,

〈k3〉

〈k〉4
γ , else.

(43)

The relative error in the value of βc
3/β

c
2 obtained from Eq.

(33)� c

https://aip.scitation.org/journal/cha
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pairwise contact network, suppress discontinuous transitions. Con-
versely, heterogeneity in the degree distribution of hyperedges of
higher order promotes such transitions.
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At t = 0, the network is randomly and uniformly seeded with
a small fraction (p = 0.001) of infected nodes, and at each subse-
quent step, the current state is iterated as described above and the
population average, xt =

∑N
i=1 Xt

i/N, is stored. To avoid the absorb-
ing state Xt = 0, we infect a single randomly chosen node if the
population becomes completely healthy. To mitigate the effect of
variability in the stochastic simulation, we average the time response
of xt over a sufficient time window (determined from the average
infected response curves) after it reached the steady-state. In this
study, we ran the simulation for a fixed set of parameters {γ , β2, β3}
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