Department of Applied Mathematics **Preliminary Examination in Numerical Analysis** August 17, 2016, 10 am – 1 pm.

Submit solutions to four (and no more) of the following six problems. Show all your work, and justify all your answers. No calculators allowed.

Problems and solutions given below:

<u>1.</u> <u>Root finding / Nonlinear equations</u>

Consider the scalar equation F(x) = 0. Assume is a root of the equation.

a. Give the recursion for the Newton method for approximating a root.

b. Give conditions on F(x) near

Solution: Nonlinear Equations

(a) Newton:

$x_{ij} = x_i - \frac{F(x_j)}{F'(x_j)} = x_i - \frac{F(x_j)}{F'(x_j)}$
ie desselvende fan een stat Fisikaan, maarondeloedrennen Klade Fijndos Fijndos filme stat weerde stat weerde s gester fan de fan gester wilden wit gestelwerdelt fan een nae referieerde state fester of weerde state fester o heen
(c) Note that $F(\alpha) = 0$ and solve for or to set
$\frac{F(x) - F'(x)}{F'(x) - 2 F'(x)} \frac{r(x)}{(x - x)^2}$
etuse neuvelusion haaveydur shudhunt wistered al tarat
$at - st_{i,i,1} \coloneqq -rac{1}{n} rac{p^m(as)}{2^n} rac{(at - st_i)^2}{2^n} rac{(st)}{2^n} rac{1}{2^n} rac{(st)}{2^n}$
an a
man lot
If a justification of the second s
List' Meganizi tril then
$1 < (M_{\alpha,\dots,m})^2 = u_{[1]} \ge (u_{[1]} - u_{[1]}), \qquad \dots = M_{[\alpha,\dots,m]}$
$ \alpha - x_1 < M \alpha - x_0 $, and, thus, $x_1 \in \mathcal{N}$. By induction, this also implies which implies $M = x_j \in \mathcal{N}$ for $j > 1$ and
$\frac{2^{2}(u, \alpha - r) \otimes (\partial_{u} \alpha + r)}{2} = \frac{2^{2}(u, \alpha - r) \otimes (\partial_{u} \alpha + r)}{2} = \frac{2^{2}(u, \alpha - r) \otimes (\partial_{u} \alpha + r)}{2} = \frac{2^{2}(u, \alpha - r) \otimes (\partial_{u} \alpha + r)}{2} = \frac{2^{2}(u, \alpha - r) \otimes (\partial_{u} \alpha + r)}{2} = \frac{2^{2}(u, \alpha - r) \otimes (\partial_{u} \alpha + r)}{2} = \frac{2^{2}(u, \alpha - r) \otimes (\partial_{u} \alpha + r)}{2} = \frac{2^{2}(u, \alpha - r) \otimes (\partial_{u} \alpha + r)}{2} = \frac{2^{2}(u, \alpha - r) \otimes (\partial_{u} \alpha + r)}{2} = \frac{2^{2}(u, \alpha - r) \otimes (\partial_{u} \alpha + r)}{2} = \frac{2^{2}(u, \alpha - r) \otimes (\partial_{u} \alpha + r)}{2} = \frac{2^{2}(u, \alpha - r) \otimes (\partial_{u} \alpha + r)}{2} = \frac{2^{2}(u, \alpha - r) \otimes (\partial_{u} \alpha + r)}{2} = \frac{2^{2}(u, \alpha - r) \otimes (\partial_{u} \alpha + r)}{2} = \frac{2^{2}(u, \alpha - r) \otimes (\partial_{u} \alpha + r)}{2} = \frac{2^{2}(u, \alpha - r) \otimes (\partial_{u} \alpha + r)}{2} = \frac{2^{2}(u, \alpha - r) \otimes (\partial_{u} \alpha + r)}{2} = \frac{2^{2}(u, \alpha - r) \otimes (\partial_{u} \alpha + r)}{2} = \frac{2^{2}(u, \alpha - r) \otimes (\partial_{u} \alpha + r)}{2} = \frac{2^{2}(u, \alpha - r) \otimes (\partial_{u} \alpha + r)}{2} = \frac{2^{2}(u, \alpha - r)}{2$

2.

3. Interpolation / Approximation

- a. Define what is meant by *cubic splines* and, for these, *natural* and *not-a-knot* conditions.
- b. Determine the *not-a-knot* cubic spline s(x) that satisfies the data $\frac{x \mid 1 \quad 0 \quad 1 \quad 2}{y \mid 2 \quad 3 \quad 4 \quad 1}$.
- c. If, at the nodes x = h, 0, h, one has function values y_h, y_0, y_h and forms a quadratic interpolant s(x), one obtains $s'(0) = \left[\frac{1}{2}y_h \frac{1}{2}y_h\right]/h$, i.e. the finite difference weights can be written as $\left[\frac{1}{2}, 0, \frac{1}{2}\right]/h$. It might be tempting to replace the quadratic interpolant here with a natural cubic spline (hoping to increase the approximation's order of accuracy). Work out the weights you get in this case.

Solution:

- a. A *cubic spline* is a cubic polynomial between adjacent nodes, and features continuous function, first and second derivative at the nodes i.e. the third derivative may be discontinuous at the nodes. Without additional end conditions, a cubic spline will have two free parameters. A *natural* cubic spline adds the two extra conditions that s''(x) = 0 at each end point. The *not-a-knot* cubic spline instead removes two 'freedoms', i.e. the cubic spline is not allowed to have a jump in its third derivative one node point in from each boundary.
- b. With four node points, and jumps in the third derivative not allowed at either of the two internal nodes, the spline becomes a single cubic, i.e. we can immediately find it, for ex., by Lagrange's or Newton's interpolation formulas. Choosing, for ex., the Newton approach, the divided difference table becomes

from which we read off the polynomial as s(x) = 2 + 1 + (x + 1) + 0 + (x + 1) + (x +

c. Since the spline s(x) is not discontinuous at x = 0 until in the third derivative, we can write it:

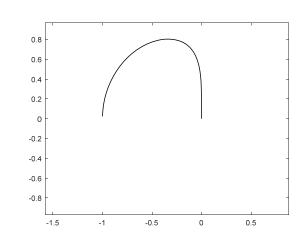
[h,0] $a bx cx^2 dx^3$ [0, h] $a bx cx^2 ex^3$

The natural end conditions give $2c \ 6dh \ 0$ and $2c \ 6eh \ 0$, resp., i.e. $e \ d$. Enforcing the values at the nodes now give

Subtracting the top equation from the bottom one gives $2bh y_h y_h$, and we obtain the same approximation for s'(0)

4. Linear Algebra

Consider the linear system $A\underline{x} \quad \underline{b}$, where $A_n \ _m, \ \underline{x}_{m-1}, \ \underline{b}_{n-1}$.


- a. Describe the three possible cases for existence and uniqueness of a solution of the linear system. Give criteria on A, \underline{b} that distinguish each case.
- b. Let \underline{x}_{LS} be a minimizer of the least squares functional, that is, let

$$\|A\underline{x}_{LS} \quad \underline{b}\|_2 \quad \min \|A\underline{x} \quad \underline{b}\|_2$$

- (i) Does \underline{x}_{LS} always exist? Explain your answer.
- (ii) Give conditions on A, \underline{b} such that \underline{x}_{LS} is unique.
- (iii) In the case of a unique solution, give an expression for the least squares solution \underline{x}_{LS} .
- (iv) If there is an infinite number of solutions to the least squares problem, find the solution of minimal norm.
- c. The minimal norm solution can be computed by using the singular value decomposition (SVD) of

- ooloolotisaanemisegebare	
(á) The take cases are: :	
tain Jenerglank Congrangeing lext at strangeland,	(i) TE's adwanna of malinan
den die geschen voor berechter met benemen werden der andere er andere er andere er andere er andere er andere	diiden Samer fe far sie der
Rumber of solutions if:	There-exists=an infinite
<u>alenti entinen perinte de la presenta de la presen</u> Alexa de la Calence de la presenta de	<u>The desired differences and a subsection and the second s</u>
The second se	<u>zraz naj</u> enteko etaz din zitu.
e off A.	(f) h of Rames

the second	Maharing and the state sections of	SVR man
	an an air an	Warnik,
$\mathcal{A} = U\Sigma \mathcal{M}^*$,		
$_{\times n}, V_{m \times m}$ are unitary and $\Sigma_{n \times m}$ is diagonal:		where U_{n} :
	<u> </u>	
··· 0	$\Sigma_{n \times m} =$	$0 \sigma_2$ 0 0
na na <u>l</u>		_ ÷ ÷
	and σ_j are the singular values. Then	,
$V\Sigma^{\dagger}U^{*},$	(A^*A)	$^{\dagger}A^{*} = A^{\dagger} =$
$,\sigma_{i}^{\dagger},\}$	where Σ^{\dagger}	$n = \text{diag}\{\dots$
$\sigma_j, \cdots, \sigma_j$	and	n = unag(
	σ_{1}^{\perp}	

Solutien DDE	
	s"o ⁷⁸⁸ 99999" "State State of William Bull"ness fillen www.
	·
	່ ^ສ ມີສະຫຼຸມໃຫ້ຫຼາຍ ເຜີຍແຫ່ງໃຫ້ຫຼາຍ
oundin all name and a state of the second	
	IIIIIIIIIAAA AMAA AMAA AMAA AMAA AMAA A

Des general Feilan Bar arties the meren asso that rive and a start of the second start

 $\frac{1}{2} = \frac{1}{2} = \frac{1}$