Applied Analysis Preliminary Exam

10.00am{1.00pm, August 21, 2017 (Draft v7, Aug 20)

Instructions. You have three hours to complete this exam. Work all ve problems. Please start each problem on a new page. Please clearly indicate any work that you do not wish to be graded (e.g., write SCRATCH at the top of such a page). You MUST prove your conclusions or show a counter-example for all problems unless otherwise noted. In your proofs, you may use any major theorem on the syllabus or discussed in class, unless you are directly proving such a theorem (when in doubt, ask the proctor). Write your student number on your exam, not your name. Each problem is worth 20 points. (There are no optional problems.)

Problem 1:

- (a) Let F be a family of equicontinuous functions from a metric space $(X; d_X)$ to a metric space (Y/d_Y) . Show that the completion of F is also equicontinuous.
- (b) Let $(f_n)_{n-1}$ be a sequence of functions in $C([0,1])$. Let jj jj be the sup norm. Suppose that, for all n , we have

 j j f_{n} jj 1, \tilde{f}_n is dierentiable, and jj f_{n}^{\emptyset} jj M for some M 0.

Show that the completion of ff_nq_{n-1} is compact, and therefore that it has a convergent subsequence.

Problem 2:

Show that there is a continuous function u on $[0, 1]$ such that

$$
u(x) = x^2 + \frac{1}{8} \int_{0}^{2x} \sin(u^2(y)) \, dy
$$

Problem 3:

Let $f \, 2 \, L^1$ (R). Show that

$$
\lim_{n \to -\infty} \int_{\mathbb{R}} \frac{f(x)}{1 + x^2} dx \xrightarrow{1=n}
$$

exists and equals $\frac{i}{f}j_{1}$.

Problem 4:

Let $K: L^2([0,1]) \perp L^2([0,1])$ be the integral operator de ned by

$$
Kf(x) = \int_{0}^{L} f(y) \, dy
$$

This operator can be shown to be compact by using the Arzela-Ascoli Theorem. For this problem, you may take compactness as fact.

- (a) Find the adjoint operator K of K .
- (b) Show that $j/Kj^2 = j/K Kjj$.
- (c) Show that $jjKjj = 2 =$. (Hint: Use part (b).)
- (d) Prove that

$$
K^{n} f(x) = \frac{1}{(n-1)!} \int_{0}^{L} x f(y) (x - y)^{n-1} dy
$$

 $\overline{7}$

(e) Show that the spectral radius of K

Problem 1 Solution:

(a) This part is almost trivial. It is just here to help with part (b).

Recall that F being equicontinuous means that, for any " > 0 , 9 > 0 such that $d_X(x; y) <$) $d_Y(f(x); f(y)) <$ " holds $8f 2F$.

To show equicontinuity of the completion, we need only worry about the additional included functions. Let q be a function in the completion of F that was not in F to begin with. Since F is dense in the completion, we can nd an $f \supseteq F$ that is arbitrarily close to q. In particular, chose $f \supseteq F$ such that $d_Y(f(x)/g(x)) <$ "=3 8x 2 X.

Let " > 0 . Note that

 $d_Y(g(x); g(y))$ $d_Y(g(x); f(x)) + d_Y(f(x); f(y)) + d_Y(f(y); g(y))$:

Since $f \supseteq F$, we can nd a > 0 such that $d_Y(f(x)/f(y)) <$ "=3 and we are done. This gives us $d_X(x; y) <$ $\frac{\partial}{\partial y}(g(x); g(y)) <$ ".

(b) We will use the Arzela-Ascoli Throrem: Let K be a compact metric space. A subset of $C(K)$ is compact if and only if it is closed, bounded, and equicontinuous.

The completion of $ff_{n}g_{n}$ is, by de nition, closed

By the assumptions of this problem, we also have that the completion of $f_{n}g$ is bounded.

It remains to show that the completion of $f_{n}g$ is equicontinuous.

Take " > 0. Fix n. By the Intermediate Value Theorem, we know that, $8 x, y \n\geq 0, 1$],

there exists a c between x and y such that $f_n(x)$ $f_n(y) = f_n^0(c)(x - y)$.

Thus, we have that $f_n(x)$ $f_n(y)$ M/x y .

De ne = $H = M$. We then have

 $jx \quad yj \leq j \quad j f_n(x) \quad f_n(y)j \leq n$

Note that this is independent of the choice of n .

Thus, the family of functions ff_nq is equicontinuous.

By part (a) we know then that the completion of this family is equicontinuous.

By the Arzela-Ascoli Throrem, we then have that the completion of $f_{n}g$ is compact, as desired.

Problem 2 Solution:

We will use the Contraction Mapping Theorem: If $T : X \perp X$ is a contraction mapping on a complete metric space $(X; d)$, then T has exacity one xed point. (i.e. There is exactly one $x \, 2 \, X$ such that $T(x) = x$.

De ne

$$
Tu(x) = x^{2} + \frac{1}{8} \int_{0}^{Z} \sin(u^{2}(y)) dy.
$$

Note that T maps $C([0,1])$ functions to $C[0,1]$ functions. Since $C([0,1])$ is complete with respect to the sup norm jj jj₁ Zthe cantraction mapping theorem aorem aorem aorem u.504how that the completion of $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ and $\frac{1}{2}$ $\frac{1}{2}$ and $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ and $\frac{1}{2}$ \frac $\lim_{\beta \to 0} \frac{1}{\beta} \left(\frac{1}{\beta} \right)^{\beta}$

By the mean value theorem, we know that there is some $s \geq [0,1]$ such that

$$
\frac{\sin u \quad \sin v}{u \quad v} \quad \cos s \quad 1
$$

so

 $j \sin u(y)$ sin $v(y)j$ $ju(y)$ $v(y)j$:

So, we have that

$$
\iint U \t\t Vjj_1 \t\t \frac{1}{8} \sup_{0 \times 1} \int_{0}^{2} y \, dy
$$

\n
$$
= \frac{1}{8} \sup_{0 \times 1} \int_{0}^{2} y \, dy + v(y) \, dy
$$

\n
$$
= \frac{1}{8} \sup_{0 \times 1} \int_{0}^{2} (y \, dy) + v(y) \, dy + v(y) \, dy
$$

\n
$$
= \frac{1}{8} \sup_{0 \times 1} \int_{0}^{2} (y \, dy) \, dy + v(y) \, dy
$$

Since u and v are assumed to be continuous functions on the closed bounded interval $[0,1]$, they are bounded on [0;1]. Suppose that they are bounded by $M > 0$. Then

$$
\begin{array}{lll}\n\text{if } u & \text{iv} \\
\text{v} & \text{iv} \\
\frac{2M}{8} \sup_{0 \times 1} \int u(y) & \text{v}(y) \, dy \\
\frac{M}{4} \int_{0}^{R} \text{i} \, \text{j} u(y) & \text{v}(y) \, dy & \frac{M}{4} \text{j} \, \text{j} u & \text{v} \\
\frac{M}{4} \int_{0}^{R} \text{i} \, \text{j} u(y) & \text{v}(y) \, dy & \frac{M}{4} \text{j} \, \text{j} u & \text{v} \\
\frac{M}{4} \int_{0}^{R} \text{i} u & \text{v} \, \text{j} \, \text{j} \, \text{k} \\
\frac{M}{4} \int_{0}^{R} \text{j} u & \text{v} \, \text{j} \, \text{j} \, \text{k}\n\end{array}
$$

This may or may not be a contraction, depending on the value of M , but, we are trying to show existence of a solution in $C([0,1])$. If we can show existence of a solution on some subset of $C([0,1])$, we are done. So, let's limit our search to the set of continuous functions on [0;1] that are bounded, in the uniform norm, by some xed constant M such that $M < 4$. Fix such an M and de ne the space

$$
C := fu \, 2 \, C([0,1]) : jjujj_1 \qquad Mg \quad C([0,1]):
$$

Note that this is a closed (and non-empty!) subset of the complete $C([0,1])$ and is therefore complete. Furthermore, M can be chosen so that $T : C \subseteq C$.

Thus, we have a contraction maping on a complete space (that is a subspace of the space of interest). By the Contraction Mapping Theorem, there exists a unique xed point $u \, 2 \, C$ $C([0,1])$, which is a solution to the problem.

Problem 3 Solution:

This is trivial if $jjfjj_1 = 0$. So, let us consider the case where $jjfjj_1 > 0$. Note that

$$
\frac{Z}{\pi} \frac{jf(x)j^{n}}{1+x^{2}} dx \qquad \qquad \text{if } j_{1} \qquad \frac{Z}{\pi} \frac{1}{1+x^{2}} dx \qquad \qquad \text{if } j_{1} \qquad \qquad \text{if } j_{1} \qquad \qquad \text{(S1)}
$$

as $n! 1$.

On the other hand, by de nition of $jjfjj_1$, for any $0 < " < jjfjj_1$, there exists an $A \mathbb{R}$ (with positive Lebesgue measure) such that $f(x)$ $\frac{1}{2}$ $\$ Thus, we have

$$
\int_{\mathbb{R}} \frac{f(x)^{n}}{1+x^{2}} dx \int_{A} \frac{f(x)^{n}}{1+x^{2}} dx \quad (jjfjj_{1} \quad \gamma^{n} \frac{1}{A^{n}+X^{2}} dx.
$$

Note that \mathbb{I}_A $\frac{1}{1+x^2}$ dx is strictly positive. Call it $c > 0$. For all n , we now have

$$
\frac{Z}{\sqrt{\pi}} \frac{f(x)j^{n}}{1+x^{2}}
$$

(c)

so we have that

$$
[(n \t1)!]^{1-n} \tbinom{p}{2}^{1-n} (n \t1)^{1} \t1=(2n) e^{1-n}
$$

which goes to -7 as $n!/ -7$. In conclusion, the spectral radius is

$$
r(K) = \lim_{n \to \infty} j/K^{n}jj^{1-n} = 0;
$$

as desired.

Problem 5 Solution: