
Solutions

Problem 1:

(a) What does it mean for an operator to be compact? A linear operatorT : H ! H is
compact if T(B ) is a precompact subset ofH for every bounded subsetB � H (recall
\precompact" means its closure is compact, or equivalently, that every sequence has a
convergent subsequence). That is to say for every bounded sequence (xn ) � H , then
(Txn ) has a convergent subsequence.

(b) Discuss convergence: Note that the problem doesn't ask the student to prove if the limit
is in B(H ), so this may be assumed.

(a) We show convergence in norm is su�cient.

Solution 1 Let (xm ) � H be a bounded sequence withkxm k � B for all m. We
will show that there is a subsequence (mk ) such that (Ax mk ) is Cauchy, and since
H is complete, therefore it is convergent. The only tricky part is de�ning mk . Since
A1 is compact, there is a subsequence (mk(1) ) such that A1(xmk (1) ) is convergent
(to, say, y1). SinceA2 is compact, there is a subsequencemk(2) of (mk(1) ) such that
A2(xmk (2) ) is convergent to y2 (and A1(xmk (2) ) is still convergent to y1, since this is
a subsequence of the subsequence).

For eachk, we have a subsequence of the subsequence associated withk � 1. We can
take the kth term of this new subsequence, and make this into a master subsequence
(mk ). This is known as the diagonalization trick . Since this master subsequence
is bounded, andkAn � Ak ! 1 , an �=3 argument shows that the sequence (yk )
is Cauchy, and thus there is somey with yk ! y, and then again using an�=3
argument we see thatAx mk ! y, thus proving that A is a compact operator.

Solution 2 A slicker proof is using the fact that a compact operator can be arbi-
trarily well-approximated by a �nite-rank operator; using this, the proof is trivial
(basically, that's what this problem is trying to show).

Solution 3 Use the fact that a compact operator (on a Hilbert space) maps weakly
convergent sequences to strongly convergent ones, i.e., ifAn is compact, thenxk * x
implies Anxk ! Anx. Thus we only need to showAx k ! Ax . We do this with the
usual triangle inequalities:

kAx k � Ax k � k Ax k � Anxkk + kAnxk � Anxk + kAnx � Ax k

and we can make all terms small. But note that we require norm convergence and
boundedness in order for the �rst and third terms to be BOTH small. If we have
only strong convergence, then we can make them small separately (by choosingn
large enough) but not necessarily have both of them small. The middle term is
arbitrarily small by choosing k su�ciently large.

Solution 4 Let B � H be bounded, so for everyn, An (B ) is pre-compact and



For any x 2 B , we have

k(An � A)xk < �= (3M )kxk � �=3:

Hence if we pick an arbitrary point A(x) 2 A(B ), it is within �=3 of the point
An (x) 2 An (B ). By the triangle inequality, since (x i ) is an �=3 net for An (B ), there
is someAx i that is within � of A(x).

Explicitly, for x 2 B , there is somex i such that

kAx � Ax i k � k Ax � Anxk + kAnx � Anx i k + kAnx i � Ax i k

< �= 3 + �=3 + �=3 = �:

Hencef Ax i g is a �nite � -net for A(B ), and since � was arbitrary, this means A(B )
is totally bounded, hence pre-compact.

(b) We show strong convergence is not su�cient. Take An to be de�ned as in Example
5.46 in the book, where forx = ( x1; x2; : : : ; xn ; xn+1 ; : : :)



Now, to evaluate the limit of the integrand, use standard techniques (e.g., L'Hôpital's
rule) to get a value of 0 for x 2 (0; 1] and 1 for x = 0. Integrating this function gives a
value of 0.

(b) The partial sums sn are monotone sincebk and r are nonnegative. The partial sums are
also bounded, since (bk ) is bounded (say,bk � M for all k), and r < 1, so that

sn � M
nX

k=1

r k =
Mr (1 � r n )

1 � r
�

Mr
1 � r

Thus we have a bounded, monotone sequence of real numbers, so the Monotone Con-
vergence Theorem says this sequence must converge. (Note that it need not converge to
Mr= (1� r ), sinceM was just a bound on (bk ); rather, it converges to r=(1� r ) �lim supk bk ).

Problem 4:

(a) H0(x) = 1, H1(x) = 2 x, H2(x) = 4 x2 � 2, and H3(x) = 8 x3 � 12x.
(b) Follow the hint and let v(x) = e�x2

, so the term in the hint is (where v(m) is the mth

derivative of v)
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and H0(x) = 1. If n < m , integrating once more gives 0 sincev and its derivatives
approach zero asx goes to�1 , and this proves the orthogonality.

(c) This follows directly from part (b), since we have just moved the weight function to ' .
(d) Because this is an orthonormal basis, we just calculate

f 8 =
Z
R

f (x)c8' 8(x) dx:

Problem 5:

(a) Let 0 2 int C and x 2 X . Then there is an � > 0 such that B � (0) � C, and in particular
�
2 2 C, so  C (x) � 2=� < 1 . Now let C be convex, and letx; y 2 C with  C (x) = � and
 C (y) = � . Then x 0 = x=� 2 C and 2 int



	( x) � 	( d) 8x 2 C, and thus the hyperplane de�ned by f x 2 X : 	( x) = 	( d)g
separatesd and C.


