Applied Analysis Preliminary Exam 10.00am–1.00pm, August 21, 2012

INSTRUCTIONS.

Solution sk tch s:

1 Integrating the di erential equation, we get

$$
v(x) = \frac{1}{4} + \frac{1}{4} \int_{0}^{2} \sin(s + v^2(s)) ds.
$$
 (1)

Let $|| \nvert ||_u = \sup_{t \in [0,1]} |u(t)|$ denote the uniform norm, and de ne the set

$$
X = \{ \in C[0,1] : (0) = \frac{1}{4} \text{ and } || ||_{u} \le 1 \}.
$$

The set X combined with the uniform norm is a metric space. Now de ne the operator

$$
[T \,](x) = \frac{1}{4} + \frac{1}{4} \int_{0}^{Z} \sin(s + (s))^2) \, ds;
$$

the IVP can then be written as a *xed point problem* $Tv = v$ *.*

First observe that if $\in X$, then *T*

Problem 3: Let *I* denote the line in the complex plane $I = \{z \in \mathbb{C} : \text{Im}(z) = 0 \text{ Re}(z) \in [-\frac{\pi}{2}]$ $\frac{\pi}{2}$; $\frac{\pi}{2}$ $\frac{\pi}{2}$]}.

(a) Set = + *i* where and are real. Set $C = \sup_{z \in I} |z - z| =$ √ $(\frac{\pi}{2} + |\)^2 + 2$. Since $|[Au](x)| \leq C|u(x)|$ for all *x*, we get $||A|| \leq C$. For the converse, suppose that ≥ 0 (the proof for \leq 0 is analogous). Set *u* = [*,* +1]. Then $||u|| = 1$ and

$$
||Au||^2 =
$$
^Z +1 $|($ + arctan(x)) $|^2 dx =$ ^Z +1 $($ + arctan(x))² + ²) dx \geq $($ + arctan(n))² + ² \rightarrow *C*:

(b) We have

$$
(Au; v) = \frac{Z}{Z^{\mathbb{R}}} \frac{Z}{u(x) v(x) dx + \arctan(x) u(x) v(x) dx}
$$
(2)

$$
(u; Av) = \overline{u(x)} \ v(x) \ dx + \arctan(x) \ \overline{u(x)} \ v(x) \ dx.
$$
 (3)

We see that *A* is self-adjoint if and only if is real.

- (c) Suppose that $Au = 0$. Then $(+ \arctan(x)) u(x) = 0$ almost everywhere. This can happen only if $u = 0$. It follows that *A* is one-to-one for all .
- (d) If $\in I$, then set $=\min_{i\in I}$ $|-z| = \text{dist}(I; \cdot)$. Since I is closed, > 0 . Clearly $||Au|| \ge ||u||$, so *A* has closed range. To prove the converse, we will use that since *A* is one-to-one for all , it has closed range if and only if it has a continuous inverse. Suppose rst that $\in (-2, 2)$. Set $I = (\tan() - 1 = n; \tan() + 1 = n)$ and $u = I_n$. Then $\lim_{t \to 0} ||Au|| = ||u|| = 0$, so *A* does not have a bounded inverse. If $= \pm$, then use $u = \pm 1$, $u + 1$ to show that *A* is

To prove the statement about the sum, we di erentiate f to f nd

$$
f'(t) = -\frac{X}{-1}(-1) e^{-t} = -\frac{X}{-1}(-e^{-t}) = -\frac{(-e^{-t}) - (-e^{-t})}{1 - (-e^{-t})} = \frac{1}{e+1} + \frac{(-1)^{t+1}e^{-t}}{e+1}.
$$

Since $\lim_{t \to \infty} f(t) = 0$, we have

$$
f(t) = \frac{Z}{f}(s) ds = \frac{Z}{e+1} ds + (-1)
$$
 $\frac{Z}{e+1} ds$:

The absolute value of the integrand in the second term is bounded by the L^1 function $g(t) = (e + 1)^{-1}$. We can therefore invoke dominated convergence as $N\to\infty$ to establish that the second term converges to zero.