
Applied Analysis Preliminary Exam
10.00am–1.00pm, August 21, 2012

Instructions.



Solution sketches:

Problem 1: Integrating the differential equation, we get

v(x) =
1

4
+

1

4

∫ x

0
sin(s + v2(s))ds. (1)

Let ||ψ||u = supt∈[0,1] |u(t)| denote the uniform norm, and define the set

X = {ϕ ∈ C[0, 1] : ϕ(0) =
1

4
and ||ϕ||u ≤ 1}.

The set X combined with the uniform norm is a metric space. Now define the operator

[T ϕ](x) =
1

4
+

1

4

∫ x

0
sin(s + (ϕ(s))2)ds,

the IVP can then be written as a fixed point problem Tv = v.

First observe that if ϕ ∈ X, then T ϕ



Problem 3: Let I denote the line in the complex plane I = {z ∈ C : Im(z) = 0 Re(z) ∈ [−π
2 , π

2 ]}.

(a) Set α = β + iγ where β and γ are real. Set C = supz∈I |α + z| =
√

(π2 + |β|)2 + γ2. Since
|[Au](x)| ≤ C|u(x)| for all x, we get ||A|| ≤ C. For the converse, suppose that β ≥ 0 (the proof for
β < 0 is analogous). Set un = χ[n,n+1]. Then ||un|| = 1 and

||Aun||2 =

∫ n+1

n
|(α+arctan(x))|2 dx =

∫ n+1

n

(
(β+arctan(x))2+γ2) dx ≥ (β+arctan(n))2+γ2 → C.

(b) We have

(Au, v) = ᾱ

∫
R

u(x) v(x) dx +

∫
R

arctan(x) u(x) v(x) dx (2)

(u, Av) = α

∫
R

u(x) v(x) dx +

∫
R

arctan(x) u(x) v(x) dx. (3)

We see that A is self-adjoint if and only if α is real.

(c) Suppose that Au = 0. Then (α + arctan(x)) u(x) = 0 almost everywhere. This can happen only if
u = 0. It follows that A is one-to-one for all α.

(d) If α /∈ I, then set δ = minz∈I |α − z| = dist(I, α). Since I is closed, δ > 0. Clearly ||Au|| ≥ δ||u||,
so A has closed range. To prove the converse, we will use that since A is one-to-one for all α, it
has closed range if and only if it has a continuous inverse. Suppose first that α ∈ (−π/2, π/2). Set
In = (tan(α) − 1/n, tan(α) + 1/n) and un = χIn . Then limn→0 ||Aun||/||un



To prove the statement about the sum, we differentiate fN to find

f ′
N (t) = −

N∑
n=1

(−1)n e−tn = −
N∑

n=1

(−e−t)n = −(−e−t) − (−e−t)N+1

1 − (−e−t)
=

1

et + 1
+

(−1)N+1e−tN

et + 1
.

Since limt→∞ fN (t) = 0, we have

fN (t) = −
∫ ∞

t
f ′
N (s) ds = −

∫ ∞

t

1

es + 1
ds + (−1)N

∫ ∞

t

e−sN

es + 1
ds.

The absolute value of the integrand in the second term is bounded by the L1 function g(t) = (et + 1)−1.
We can therefore invoke dominated convergence as N → ∞ to establish that the second term converges
to zero.
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