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Dodge and survive: Modeling the predatory nature of dodgeball
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The analysis of games and sports as complex systems can give insights into the dynamics of human
competition and has been proven useful in soccer, basketball, and other professional sports. In this paper, we
present a model for dodgeball, a popular sport in U.S. schools, and analyze it using an ordinary differential
equation (ODE) compartmental model and stochastic agent-based game simulations. The ODE model reveals a
rich landscape with different game dynamics occurring depending on the strategies used by the teams, which can
in some cases be mapped to scenarios in competitive species models. Stochastic agent-based game simulations
confirm and complement the predictions of the deterministic ODE models. In some scenarios, game victory can
be interpreted as a noise-driven escape from the basin of attraction of a stable fixed point, resulting in extremely
long games when the number of players is large. Using the ODE and agent-based models, we construct a strategy
to increase the probability of winning.
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I. INTRODUCTION

Games and sports are emerging as a rich test bed to study
the dynamics of competition in a controlled environment.
Examples include the analysis of passing networks [1,2] and
entropy [3] in soccer games (see also Ref. [4] for a discussion
on data-driven tactical approaches), scoring dynamics [5–7],
and play-by-play modeling [8,9] in professional sports such
as hockey, basketball, football, and table tennis, penalty kicks
in soccer games [10], and serves in tennis matches [11]. Here
we explore the dynamics of dodgeball, where the number of
players playing different roles changes dynamically and ulti-
mately determines the outcome of the game. While modeling
dodgeball might seem like a very specific task, it is a relatively
clean and well-defined system where the ability of mean-field
techniques [12,13] to describe human competition can be put
to the test. In addition, it complements ongoing efforts to
quantify and model dynamics in sports and games [1–11].

In this paper, we present and analyze a mathematical model
of dodgeball based on both agent-based stochastic game sim-
ulations and an ordinary differential equation (ODE)–based
compartmental model. By analyzing the stability of fixed
points of the ODE system, we find that different game dy-
namics can occur depending on the teams’ strategies: one of
the teams achieves a quick victory, either team can achieve a
victory depending on initial conditions, or the game evolves
into a stalemate. For the simplest strategy choice, these
regimes can be interpreted in the context of a competitive
Lotka-Volterra model. Numerical simulations of games based
on stochastic behavior of individual players reveal that the
stalemate regime corresponds to extremely long games with
large fluctuations. These long games can be interpreted as a
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noise-driven escape from the basin of attraction of the stable
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FIG. 1. (a) Setup of dodgeball court. Players in team i make
transitions between court i and jail i, and team i loses when there
are no players in court i.

time and the winner is decided based on other factors (e.g.,
which team has more players on their court). An example of
this is in Fig. 2, which shows the numbers of players in courts
1 and 2, X1 and X2, during two fifth-grade dodgeball games
in Eisenhower Elementary in Boulder, Colorado. The values
of X1 and X2 seem to fluctuate without any team obtaining
decisive advantage. The games continued after the time in-
terval shown and were eventually stopped. Our subsequent
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TABLE I. Notation used in the dodgeball model, Eqs. (5) and (6).
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FIG. 7. Simulations of games with the same constants as Fig. 4.
Trajectories (X1, X2) have stochastic fluctuations on top of the deter-
ministic flow of Fig. 4. The “stalemate” regime (top left) results in
long, back-and-forth games.
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FIG. 9. (a) Probability that team 1 wins a game P1 as a func-
tion of a1 with c = 2/3 and a2 = 3/4 for N = 1, 5, 10, 20, and 50
(solid blue, dashed orange, dashed dotted yellow, dotted purple, and
solid light green lines, respectively). The dashed red lines mark
bifurcations in the deterministic dynamics (see text), and the dashed
horizontal line indicates P1 = 1/2. The leftmost region corresponds
to the “stalemate” regime, which leads to long games. The middle
region represents “team 1 wins,” which can be noted by the large
values of P1 for large values of N . The right region is the “competi-
tive” region in the deterministic model noted by mixed values of P1

and quicker games. (b) Average duration of games (in dimensionless
time τ = λNkjt) with the same parameters as in the bottom panel.
The duration of games in the “stalemate” regime increases with N .
The shaded area around the green curve represents three standard
deviations.

for a2 < a1. We note that for very small N (e.g., N = 1, 5), the
predictions of the deterministic theory break down. This can
be understood in the limiting case N = 1 (solid blue curve),
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gion labeled “competitive” in Fig. 5(a) is strongly affected by
stochastic fluctuations in the agent-based model. A treatment
of the effect of finite-size fluctuations using the so-called “lin-
ear noise approximation” [16] could allow one to study quan-
titatively the escape from the basin of attraction of the stale-
mate fixed point, but we do not attempt this approach here.

B. Heuristic strategy

In the example treated in the previous sections, the prob-
ability that a player in team i decides to throw a ball to
an enemy player instead of rescuing a teammate from jail,
Fi(X1, X2) is fixed throughout the game at the value ai. In
reality, players may adjust this probability in order to optimize
the probability of winning. In this section, we will develop a
heuristic greedy strategy with the goal of trying to optimize
victory. For this purpose, it is useful to define the quantities
Hi as

H1 = X1

X1 + X2
, H2 = X2

X1 + X2
. (12)

These quantities have the advantage that they are normalized
between 0 and 1, with Hi = 0 (Hi = 1) corresponding to a
loss (victory) by team i. In addition, Hi corresponds to the
probability that team i will throw a ball next, and therefore it
is a good indicator of how much control team i has. Therefore,
it is reasonable for team i to apply a strategy to increase
Hi. To develop such a strategy, we define Hi and H+

i as the
values of Hi before and after a ball is thrown. Similarly, we
define Xi and X +

i as the values of Xi before and after a ball is
thrown. For definiteness, we will present the strategy for team
1, and the strategy for team 2 will be similar. The basis of the
strategy is to choose the value of F1(X1, X2) that maximizes
the expected value of H+

1 , E[H+
1 ]. Since F1 is the probability

that the ball is thrown at enemy players, pe is the probability
that such a ball actually hits an enemy player, 1 − F1 is the
probability that the ball is thrown at a teammate in jail, and pj

is the probability that such a ball is successful in rescuing a
teammate, the expected value of H+

1 is given by

E[H+
1 ] = F1

[ X1

X1 + X2 − 1
pe + X1

X1 + X2
(1 − pe)

]

+ (1 − F1)

[
X1 + 1

X1 + X2 + 1
p j + X1

X1 + X2
(1 − p j )

]
,

(13)

which can be rewritten as

E[H+
1 ] = A + B

X1 + X2
F1, (14)

where

B =
[

Xt
1

Xt
1 + Xt

2 − 1
pe − Xt

2

Xt
1 + Xt

2 + 1
p j

]
(15)

and A is independent of F1.
Since Eq. (14) is linear in F1, it is maximized by choosing

F1 = 1 when B > 0 and F1 = 0 when B < 0. Therefore, the
choice of F1 that maximizes the expected value of H+

1 , F ∗
1 , is

F ∗
1 =

{
1, X1

X1+X2−1 pe(X2) � X2
X1+X2+1 p j (N − X1),

0, otherwise.
(16)

FIG. 11. Probability of team 1 winning with the heuristic strat-
egy F1 against a fixed strategy a2. Number of players in each game is
set to N = 20.

When X1, X2 � 1, the strategy simplifies to

F ∗
1 ≈

{
1, X1 pe(X2) � X2 p j (N − X1),
0, otherwise.

(17)

We note that this can also be derived by maximizing dH1/dt
by using Eqs. (3) and (4). Furthermore, for the case considered
in Secs. III and IV, where pe(Xi ) = keXi and p j (Yi ) = k jYi, the
strategy reduces to

F ∗
1 =

{
1, keX1 � k j (N − X1),
0, otherwise. (18)

For example, when ke = k j (i.e., the probability of success
in hitting an enemy player is the same as the probability of
succeeding in rescuing a teammate from jail), the strategy for
team 1 consists in trying always to rescue teammates from jail
1 when the majority of team 1 player’s are in jail 1, and in
trying to hit players from team 2 when the majority of team
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vealed a rich dynamical landscape. Depending on teams’
strategies, the dynamics and outcome of the game are deter-
mined by a combination of the stability of the fixed points
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In practice, we stop this iteration when j > Jmax = 256.
The iteration described by Eq. (A7) uses repeated nonsparse
matrix multiplications, while Eq. (A4) uses faster sparse
matrix-vector products. However, since games can be ex-

tremely long in the stalemate regime, the method described
by Eq. (A7) is still faster in that regime. We choose the values
Jmax and Kmax such that in practice Eqs. (A4) and (A7) take
similar amounts of time in the stalemate regime.
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