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Abstract

We numerically solve nonlinear partial differential equations of the
form ut = Lu+Nf(u) where L and N are linear differential operators
and f(u) is a nonlinear function. Equations of this form arise in the
mathematical description of a number of phenomena including, for ex-
ample, signal processing schemes based on solving partial differential
equations or integral



oscillatory solutions and can exhibit shock-like behavior. Generally speak-
ing, the approach takes advantage of the e�cient representation of functions
and operators in wavelet bases, and updates the solution by implementing
two recently developed adaptive algorithms that operate on these represen-
tations. Speci�cally, the algorithms involve the adaptive application of oper-
ators to functions (‘special’ matrix-vector multiplication) and the adaptive
evaluation of nonlinear functions of the solution of the PDE, in particular,
the pointwise product. These algorithms use the fact that wavelet expan-
sions may be viewed as a localized Fourier analysis with multiresolution
structure that automatically or adaptively distinguishes between smooth
and shock-like behavior. The algorithms are adaptive since they update the
solution using its representation in a wavelet basis, which concentrates signif-
icant coe�cients near singular behaviour. Additionally, and as we will show,
the algorithm for evaluating nonlinear functions is analogous to the approach
used to update the solution of a PDE via pseudo-spectral type algorithms.
These two features of the algorithms allow us to combine the desirable fea-
tures of �nite-di�erence approaches, spectral methods and front-tracking or
adaptive grid approaches into a collection of e�cient, generic algorithms.
We refer to the overall methodology for updating the solution of a nonlinear
PDE via these algorithms as an adaptive pseudo-wavelet method.

1.1 The Model Equation

In this Chapter we are concerned with computing numerical solutions of

ut = Lu+Nf(u), (1.1)

with the initial condition

u(x, 0) = u0(x), 0 � x � 1, (1.2)

and the periodic boundary condition

u(0, t) = u(1, t), 0 � t � T. (1.3)

We explicitly separate the evolution Equation (1.1) into a linear part, Lu,
and a nonlinear part, Nf(u), where the operators L and N are di�erential
operators that do not depend on time t. The function f(u) is typically
nonlinear, e.g. f(u) = up.
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Examples of Equation (1.1) in 1+1 dimensions include reaction-di�usion
equations, e.g.

ut = νuxx + up, p > 1, ν > 0, (1.4)

equations describing the buildup and propagation of shocks, e.g. Burgers’
Equation

ut + uux = νuxx, ν > 0, (1.5)

[15], and equations having special soliton solutions, e.g. the Korteweg-de
Vries equation

ut + αuux + βuxxx = 0, (1.6)

where α and β are constant, [1, 24]. Finally, a simple example of Equa-
tion (1.1) is the classical di�usion (or heat) equation

ut = νuxx, ν > 0. (1.7)

Although we do not address multi-dimensional problems in this Chapter,
we note that the Navier-Stokes equations may also be written in the form
(1.1). Consider

ut + 1
2 [u � ru +r(u � u)] = νr2u�rp, (1.8)where(divj
20.357ψ02ψTd
(u)Tj
/R34ψ10.9091ψTf
9.34905ψ0ψTd
(alTj
11.5091ψ0ψTd
(0)Tj
/R67ψ10.9091ψTf
5.38909ψ0ψTd
(,)Tj
/R34ψ10.9091ψTf
103.9791ψψTd
((1.89)Tj
-336.1856419.44ψTd
(1)d)Tj
/R67ψ10.9091ψTf
22.1672ψ0ψTd
(adpj
/R34ψ10.9091ψTf
9.34907ψ0ψTd
(�)dete)TTj
38.7816ψ0ψTd
(t,)p,Applyg



where H(�) is the Hilbert transform (see [18



straigh



tor) depends on the most singular behavior of the function. Since we are
interested in solutions of partial di�erential equations that have regions of
smooth, non-oscillatory behavior interrupted by a number of well-de�ned
localized shocks or shock-like structures, using a basis of the eigenfunctions
of di�erential operators would require a large number of terms due to the
singular regions. Alternately, a localized representation of the solution, typ-
i�ed by front-tracking or adaptive grid methods, may be employed in order
to distinguish between smooth and shock-like behavior. In our approach the
number of operations is proportional to the number of signi�cant coe�cients
in the wavelet expansions of functions and operators and, thus, is similar to
that of adaptive grid methods.

The basic mechanism of re�nement in wavelet-based algorithms is very
simple. Due to the vanishing moments of wavelets, see e.g. [22], we know
that (for a given accuracy) the wavelet transform of a function ‘automat-
ically’ places signi�cant coe�cients in a neighborhood of large gradients
present in the function. We simply remove coe�cients below a given accu-
racy threshold. This combination of basis expansion and adaptive thresh-
olding is the foundation for our adaptive pseudo-wavelet approach.

In order to take advantage of this ‘adaptive transform’ and compute so-
lutions of (1.1) in wavelet bases using O(Ns) operations, we have developed
two algorithms: the adaptive application of operators to functions, and the
adaptive pointwise product of functions. These algorithms are necessary in-
gredients of any fast, adaptive numerical scheme for computing solutions of
partial di�erential equations. The algorithm for adaptively multiplying op-
erators and functions is based on a ‘vanishing-moment property’ associated
with the B-blocks of the so-called Non-Standard Form representation of a
class of operators (which includes di�erential operators and Hilbert trans-
forms). The algorithm for adaptively computing f(u), e.g. the pointwise
product, is analogous to the method for evaluating nonlinear contributions
in pseudo-spectral schemes. The spectral expansion of u is projected onto
a ‘physical’ subspace, the function f(u) is evaluated, and the result is pro-
jected into the spectral domain. In our algorithm, contributions to f(u) are
adaptively computed in ‘pieces’ on individual subspaces.

Each of our adaptive algorithms uses O(Ns) operations, where Ns is
the number of signi�cant coe�cients of the wavelet representation of the
solution of (1.1). The adaptivity of our algorithms and the analogy with
pseudo-spectral methods, prompts us to refer to our overall approach as an
adaptive pseudo-wavelet method.

7



The outline of this Chapter is as follows. In Section 2 we use the semi-
group approach to replace the nonlinear di�erential equation (1.1) by an
integral equation and describe a procedure for approximating the integral
to any order of accuracy. We provide a brief review of wavelet \tools" rele-
vant to our discussion in Section 3. In Section 4 we are concerned with the
construction of and calculations with the operators appearing in the quadra-
ture formulas derived in Section 2. Speci�cally, we describe a method for
constructing the wavelet representation, derive the vanishing-moment prop-
erty, and describe a fast, adaptive algorithm for applying these operators
to functions expanded in a wavelet basis. In Section 5 we introduce a new
adaptive algorithm for computing the pointwise product of functions ex-
panded in a wavelet basis, and discuss the calculation of general nonlinear
functions. In Sections 4 and 5 we give simple numerical examples illustrat-
ing the algorithms. In Section 6 we illustrate the use of these algorithms
by providing the results of a number of numerical experiments. Finally, in
Section 7 we draw a number of conclusions based on our results and



In this Chapter we use Equation (2.14) as a starting point for an e�cient
numerical algorithm for solving (1.1). A signi�cant di�culty in designing
numerical algorithms based directly on (2.14) is that the matrices repre-
senting these operators are dense in the ordinary representation. As far as
we know, it is for this reason that the semigroup approach has had limited
use in numerical calculations. We show in Sections 4.1 and 4.2 that in the
wavelet system of coordinates these operators are sparse (for a �xed but
arbitrary accuracy) and have properties that allow us to develop fast, adap-
tive numerical algorithms. Discrete evolution schemes for (2.14) were used
in [11], and further investigated in [12].

The starting point for our discrete evolution scheme is (2.14) where we
consider the function u(x, t) at the discrete moments of time t 70ψ914)di�cult



I is the identity operator and where u(ti) = ui and v(ti) = vi. Note that
(2.17) is equivalent to the standard trapezoidal rule. For m = 2 our proce-
dure yields an analogue of Simpson’s rule

I(t) =
2X

i=0

ci;iu(ti)ux(ti) +O((�t)3), (2.20)

where

c0;0 = 1
6OL;2 � 1

3L, (2.21)

c1;1 = 2
3OL;2, (2.22)

c2;2 = 1
6OL;2 + 1

3L, (2.23)

For the derivation of higher order schemes (m > 2) and the stability analysis
of these schemes we refer to [12], since our goals in this Chapter are limited to
explaining how to make e�ective use of such schemes in adaptive algorithms.

3 Preliminaries and Conventions of Wavelet Anal-

ysis

In this Section we review the relevant material associated with wavelet basis
expansions of functions and operators. In Section 3.1 we set a system of
notation associated with multiresolution analysis. In Section 3.2 we describe
the representation of functions expanded in wavelet bases, and in Section
3.3 we describe the representation of operators in the standard and non-
standard forms. In Section 3.4 we discuss the construction of the non-
standard form of di�erential operators, follo a





not have to be �nite and, by choosing Lf <1, we are selecting compactly
supported wavelets, see, e.g. [22].

The function ψ(�) has M vanishing moments, i.e.,

Z ∞

−∞
ψ(x



bases, via the two-scale di�erence equations



where Pj denotes the projection operator onto subspace Vj. The set of

coe�cients fsj
kgk∈ ZZ , which we refer to as ‘averages’, is computed via the

inner product

sj
k =

Z +∞

−∞
f(x)ϕj;k(x)dx. (3.37)

Alternatively, it follows from (3.26) and (3.36) that we can also write (Pjf)(x)
as a sum of projections of f(x) onto subspaces Wj′ , j

′ > j

(Pjf)(x) =
X

j′>j

X

k∈ ZZ

dj′

k ψj′;k(x), (3.38)

where the set of coe�cients fdj
kgk∈ ZZ , which we refer to as ‘di�erences’, is

computed via the inner product

dj
k =

Z +∞

−∞
f(x)ψj;k(x)dx. (3.39)

The projection of a function on subspace Wj is denoted (Qjf)(x), where
Qj = Pj−1 � Pj . Since we are considering a ‘periodized’ MRA, on each
subspace Vj and Wj the coe�cients of the projections satisfy

sj
k = sj

k+2n−j ,

dj
k = dj

k+2n−j ,
(3.40)

for each j = 1, 2, . . . , J and k 2 IF2n−j = ZZ /2n−j ZZ , i.e. IF2n−j is the �nite
�eld of 2n−j integers, e.g. the set f0, 1, . . . , 2n−j � 1g.

In our numerical algorithms, the expansion into the wavelet basis of
(P0f)(x) is given by a sum of successive projections on subspaces Wj, j =
1, 2, . . . , J , and a �nal ‘coarse’ scale projection on VJ ,

(P0f)(x) =
JX

j=1

X

k∈IF
2n−j

dj
kψj;k(x) +

X

k∈IF
2n−J

sJ
kϕJ;k(x). (3.41)

Given the set of coe�cients fs0
kgk∈IF2n , i.e. the coe�cients of the projection

of f(x) on V0, we use (3.27) and (3.28) to replace (3.37) and (3.39) by the
following recursive de�nitions for sj

k and dj
k,

sj
k =

Lf−1X

l=1

hls
j−1
l+2k+1, (3.42)

dj
k =

Lf−1X

l=1

gls
j−1
l+2k+1, (3.43)
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where j = 1, 2, . . . , J and k 2 IF2n−j .
Given the coe�cients s0 = P0f 2 V0 consisting of N = 2n ‘samples’

the decomposition of f into the wavelet basis is an order N procedure,
i.e. computing the coe�cients dj

k and sj
k recursively using (3.42) and (3.43)

is an order N algorithm. Computing the J -scale decomposition of f via
(3.42) and (3.43) by the pyramid scheme is illustrated in Figure 1. Figure 2

fs0kg �! fs1kg �! fs2kg �! fs3kg � � � �! fsJ
kg

& & & &
fd1

kg fd2
kg fd3

kg � � � fdJ
kg

Figure 1: Projection of the coe�cients fs0
kg into the multiresolution analysis

via the pyramid scheme.

illustrates a typical wavelet representation of a function withN = 2n, n = 13
and J = 7. We have generated this Figure using ‘coi
ets’, see e.g. [21],
with M = 6 vanishing moments and an accuracy (cuto�) of ε = 10−6,
and note that a similar result is obtained for other choices of a wavelet
basis. The top Figure is a graph of the projection of the function f on
subspace V0, which we note is a space of dimension 213. Each of the next
J = 7 graphs represents the projection of f on subspaces Wj, for j =
1, 2, . . . 7. Each Wj is a space of dimension 213−j , i.e. each consists of
213−j coe�cients. Even though the width of the graphs is the same, we
note that the number of degrees of freedom in Wj is twice the number of

degrees of freedom in Wj+1. Since these graphs show coe�cients dj
k which

are above the threshold of accuracy, ε, we note that the spaces W1, W2,
W3, and W4 consist of no signi�cant wavelet coe�cients. This illustrates
the ‘compression’ property of the wavelet transform: regions where the
function (or its Fi860291 0 Td
(v)Tj
5.4011 Tt. 0 Td
(note)T(the)Tj
19.6cuto�





wavelet bases. First, we consider a two-dimensional wavelet basis which is
arrived at by computing the tensor product of two one-dimensional wavelet
basis functions, e.g.

ψj;j′;k;k′(x, y) = ψj;k(x)ψj′;k′(y), (3.44)

where j, j ′, k, k′ 2 ZZ . This choice of basis leads to the standard form (S-
form) of an operator, [5, 8]. The projection of the operator T into the
multiresolution analysis is represented in the S-form by the set of operators

T = fAj , fBj′

j gj′≥j+1, f�j′

j gj′≥j+1gj∈ ZZ , (3.45)

where the operators Aj , B
j′

j , and �j′

j are projections of the operator T into
the multiresolution analysis as follows

Aj = QjTQj : Wj !Wj ,

Bj′

j = QjTQj′ : Wj′ !Wj,

�j′

j = Qj′TQj : Wj !Wj′ ,

(3.46)

for j = 1, 2, . . . , n and j ′ = j + 1, . . . , n.
If n is the �nite number of scales, as in (3.35), then (3.45) is restricted

to the set of operators

T0 = fAj , fBj′

j gj
′=n

j′=j+1, f�
j′

j gj
′=n

j′=j+1, B
n+1
j ,�n+1

j , Tngj=1;:::;n, (3.47)

where T0 is the projection of T on V0. Here the operator Tn is the coarse
scale projection of the operator T on Vn,

Tn = PnTPn : Vn ! Vn. (3.48)

The subspaces Vj and Wj appearing in (3.46) and (3.48) can be periodized
in the same fashion as described in Section 3.2.

The operators Aj , B
j′

j , �j′

j , and Tn appearing in (3.45) and (3.47) are

represented by matrices αj , βj;j′ , γj;j′ and sn with entries de�ned by

αj
k;k′ =

R R
ψj;k(x)K(x, y)ψj;k′(y)dxdy,

βj;j′

k;k′ =
R R

ψj;k(x)K(x, y)ψj′;k′(y)dxdy,

γj;j′

k;k′ =
R R

ψj;k(x)K(x, y)ψj′;k′(y)dxdy,

sn
k;k′ =

R R
ϕn;k(x)K(x, y)ϕn;k′(y)dxdy,

(3.49)
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where K(x, y) is the kernel of the operator T . The operators in (3.47) are
organized as blocks of a matrix as shown in Figure 3.3.

In [8] it is observed that if the operator T is



A
1

2
A

A3

B
1

3
B

1

4
B

1

5

B
2

3
B

2

4
B

2

5

B
4

3
B

5

3

4
Γ

Γ
5

B
5

4
A4

2
B

1

Γ

Γ

2

1

1
3

Γ
2

3

1

1

2

4

2

5

4

3
5

3

5

4

Γ

Γ

Γ

Γ Γ 4T

Figure 3: Organization of the standard form of a matrix.

An alternative to forming two-dimensional wavelet basis functions using
the tensor product (which led us to the S-form representation of operators) is
to consider basis functions which are combinations of the wavelet, ψ(�), and
the scaling function, ϕ(�). We note that such an approach to forming basis
elements in higher dimensions is speci�c to wavelet bases (tensor products
as considered above can be used with any basis, e.g. Fourier basis).

We will consider representations of operators in the non-standard form
(NS-form), following [8] and [5]. Recall that the wavelet representation of
an operator in the NS-form is arrived at using bases formed by combinations
of wavelet and scaling functions, for example, in L2(IR2)

ψj;k(x) ψj;k′(y),
ψj;k(x) ϕj;k′(y),
ϕj;k(x) ψj;k′(y),

(3.53)

where j, k, k′ 2 ZZ . The NS-form of an operator T is obtained by expanding
T in the ‘telescopic’ series

T =
X

j∈ ZZ

(QjTQj +QjTPj + PjTQj), (3.54)
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A3 3

3 3

2

2 2
A

A

B

TΓ

Γ

Γ

B

B
1 1

1

Figure 5: Organization of the non-standard form of a matrix. Aj, Bj, and
�j , j = 1, 2, 3, and T3 are the only non-zero blocks.

using the decomposition algorithm described by (3.42) and (3.43) as follows.
Given the coe�cients fŝjgJj=1 and fd̂jgJj=1, we decompose fŝ1g into f~s2g
and f ~d2g and form the sums fs2g = fŝ2 + ~s2g and fd2g = fd̂2 + ~d2g.
Then on each scale j = 2, 3, . . . , J � 1, we decompose fsjg = fŝj + ~sjg
into f~sj+1g and f ~dj+1g and form the sums fsj+1g = fŝj+1 + ~sj+1g and
fdj+1g = fd̂j+1 + ~dj+1g. The sets fsJg and fdjgJj=1 are the coe�cients of
the wavelet expansion of (T0f0)(x), i.e. the coe�cients appearing in (3.63).
This procedure is illustrated in Figure 7.

An alternative to projecting the representation (3.62) into the wavelet
basis is to reconstruct (3.62) to space V0, i.e. form the representation (3.36)

(P0f)(x) =
X

k∈ ZZ

s0kϕ0;k(x), (3.64)

using the reconstruction algorithm described in Section 3 as follows. Given
the coe�cients fŝjgJj=1 and fd̂jgJj=1, we reconstruct fd̂Jg and fŝJg into

f~sJ−1g and form the sum fsJ−1g = fŝJ−1 + ~sJ−1g. Then on each scale
j = J � 1, J � 2, . . . , 1 we reconstruct fŝjg and fd̂jg into f~sj−1g and form
the sum fsj−1g = fŝj−1+~sj−1g. The �nal reconstruction (of fd1g and fs1g)
forms the coe�cients fs0g appearing in (3.64). This procedure is illustrated

22
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Figure 6: Illustration of the application of the non-standard form to a vector.

in Figure 8.

3.4 The Non-Standard Form of Differential Operators

Following [5], in this Section we recall the wavelet representation of di�er-
ential operators ∂p

x in the NS-form. The rows of the NS-form of di�erential
operators may be viewed as �nite-di�erence approximations on subspace V0

of order 2M�1, where M is the number of vanishing moments of the wavelet
ψ(x).

The NS-form of the operator ∂p
x consists of matrices Aj , Bj ,�j, for j =

0, 1, . . . , J and a ‘coarse scale’ approximation T J . We denote the elements

fŝ0g ! fŝ1 + ~s1g = fs1g ! � � � ! fŝJ + ~sJg = fsJg
& & &
fd̂1 + ~d1g = fd1g � � � fd̂J + ~dJg = fdJg

Figure 7: Projection of the product of the NS-form and a function into a
wavelet basis.
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where a2k−1 are the autocorrelation coe�cients of H de�ned by

an = 2

Lf−1−nX

i=0

hi hi+n, n = 1, . . . , Lf � 1. (3.69)

We note that the autocorrelation coe�cients an with even indices are zero,

a2k = 0, k = 1, . . . , Lf/2 � 1, (3.70)

and a0 =
p

2. The resulting coe�cients s0
l corresponding to the projection

of the operator ∂p
x on V0 may be viewed as a �nite-di�erence approximation

of order 2M � 1. Further details are found in [5].
We are interested in developing adaptive algorithms, i.e. algorithms such

that the number of operations performed is proportional to the number
of signi�cant coe�cients in the wavelet expansion of solutions of partial
di�erential equations. The S-form has ‘built-in’ adaptivity, i.e. applying
the S-form of an operator to the wavelet expansion of a function, (3.38), is a
matter of multiplying a sparse vector by a sparse matrix. On the other hand,
as we have mentioned before, the S-form is not a very e�cient representation
(see, e.g., our discussion of convolution operators in Section 3.3).

In the following Sections we address the issue of adaptively multiplying
the NS-form and a vector. Since the NS-form of a convolution operator
remains a convolution, the Aj, Bj , and �j blocks may be thought of as being
represented by short �lters. For example, the NS-form of a di�erential op-
erator in any dimension requires O(C) coe�cients as it would for any �nite
di�erence scheme. We can exploit the e�cient representation a�orded us
by the NS-form and use the vanishing-moment property of the B j and �j

blocks of the NS-form of di�erential operators and the Hilbert transform
to develop an adaptive algorithm. In Section 4.1 we describe two meth-
ods for constructing the NS-form representation of operator functions. In
Section 4.2 we establish the vanishing-moment property which we later use
to develop an adaptive algorithm for multiplying operators and functions
expanded in a wavelet basis. Finally, in Section 4.3 we present an algorithm
for adaptively multiplying the NS-form representation of an operator and
a function expanded in the wavelet system of coordinates.
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4 Non-Standard Form Representation of Opera-

tor Functions

In this



for example. In the following we assume that the function f is





4.2 Vanishing Moments of the B-Blocks

We now establish the vanishing-moment property of the B-blocks of the
NS-form representation of functions of a di�erential operator described in
Section 4.1 and the Hilbert transform. We note that a similar result also
holds for the B-blocks of some classes of pseudo-di�erential operators, see
e.g. [31]. Additionally, we note that these results do not require compactly
supported wavelets and we prove the results for the general case. In Section
4.3 we use the vanishing-moment property to design an adaptive algorithm
for multiplying the NS-form of an operator and the wavelet expansion of a
function.

Proposition 1. If the wavelet basis has M vanishing moments, then the
B-blocks of the NS-form of the analytic operator function f(∂x), described
in Section 4.1, satisfy

+∞X

l=−∞

lmβj
l = 0, (4.88)

for m = 0, 1, 2, . . . ,M � 1 and j = 1, 2, . . . J .
Proof. Using the de�nition (3.49), we obtain

+∞X

l=−∞

lmβl =

Z +∞

−∞
ψ(x� k)f(∂x)Pm(x)dx. (4.89)

We have used the fac13.56 
/R67 4291 0liqtt65j
-3524451 -16.08 Td
(+)Tj
/R89 7.97011 Tf
6.59924 0 Td
(1)Tj
/R86 9.96264 T 1.68 Td
(()Tj
/R67 10.9091 Tf
4.18909 0 Td
(x)Tj
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(where p.v. indicates the principle value), satisfy

+∞X

l=−∞

lmβj
l = 0, (4.93)

for 0 � m �M � 1 and j = 1, 2, . . . J .
Proof. The βl elements of the NS-form of the Hilbert transform are given
by

βl =

Z +∞

−∞
ψ(x� l)(Hϕ)(x)dx, (4.94)

and proceeding as in Proposition 1, we �nd

+∞X

l=−∞

lm βl =
+∞X

l=−∞

lm
Z +∞

−∞
ψ(x� l)(Hϕ)(x)dx

= �
+∞X

l=−∞

lm
Z +∞

−∞
(Hψ)(x)ϕ(x + l)dx

= �
Z +∞

−∞
(Hψ)(x)Pm(x)dx, (4.95)

where, once again, we have used (4.90).
To show that the integrals in (4.95) are zero, we establish that (Hψ)(x)

has at least M vanishing moments. Let us consider the generalized function
Z ∞

−∞
(Hψ)(x)xmei�xdξ = i−m∂m

�
d(Hψ)(ξ). (4.96)

In the Fourier domain the Hilbert transform of the function g de�ned by

d(Hg)(ξ) = �i sign(ξ)ĝ(ξ), (4.97)

may be viewed as a generalized function, derivatives of which act on test
functions f 2 C∞0 (IR) as

<
dm

dξm
(�i sign(ξ)ĝ(ξ)) , f > = �i

mX

j=1

�
m

l

�
f (j−1)(0)ĝ(m−j)(0) +

i

Z ∞

−∞
sign(ξ) ĝ(m)(ξ)f(ξ)dξ. (4.98)

In order



where ψ̂(ξ) is the Fourier transform of ψ(x). Setting ĝ(ξ) = ψ̂(ξ) in (4.98),
the sum on the right hand side of (4.98) is zero. We also observe that
the integrand on the right hand side of (4.98), i.e. sign(ξ)ψ̂(m)(ξ)f̂(ξ), is
continuous at ξ = 0, once again because ψ(x) has M vanishing moments.
We can then de�ne functions Ŵ(m)(ξ) for m = 0, 1, . . . ,M � 1, as

Ŵ(m)(ξ) =

8
><
>:

�i ψ̂(m)(ξ), ξ > 0;
0, ξ = 0;

i ψ̂(m)(ξ), ξ < 0,

(4.100)

such that Ŵ(m)(ξ) coincides with them-th derivative of the generalized func-
tion (4.97) on the test functions f 2 C∞0 (IR). Since Ŵ(m)(ξ) are continuous
functions for m = 0, 1, . . . ,M � 1, we obtain instead of (4.96)
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Figure 9: For the operators considered in Section 4.2 the vanishing-moment
property of the rows of the B-block yields a sparse result (up to a given
accuracy ε) when applied to a smooth and dense vector fsjg.

for j = 1, 2, . . . , J � 1 and k 2 IF2n−j = f0, 1, 2, . . . , 2n−J � 1g and on the
the �nal, coarse scale,

d̂J
k =

X

l

AJ
k+ld

J
k+l +

X

l

BJ
k+ls

J
k+l, (4.104)

ŝJ
k =

X

l

�J
k+ld

J
k+l +

X

l

T J
k+ls

J
k+l, (4.105)

for k 2 IF2n−J . The di�culty in adaptively applying the NS-form of an
operator to such functions is the need to apply the B-blocks of the operator
to the averages fsjg in (4.102). Since the averages are \smoothed" versions
of the function itself, these vectors are not necessarily sparse and may consist
of 2n−j signi�cant coe�cients on scale j. Our algorithm uses the fact that
for the operator functions considered in Section 4.1, the rows of the B-blocks
have M vanishing moments. This means that when the row of a B-block is
applied to the \smooth" averages fsjg the resulting vector is sparse (for a
given accuracy ε), as is illustrated in Figure 9.

Since each row of the B-block has the same number of vanishing moments
as the �lter G, we can use the fdjg coe�cients of the wavelet expansion to
predict signi�cant contributions to (4.102). In this way we can replace the
calculations with a dense vector fsg in (4.102) by calculations with a sparse

32



vector f~sg,
~dj
k =

X

l

Aj
k+ld

j
k+l +

X

l

Bj
k+l~s

j
k+l, (4.106)

for j = 1, 2, . . . , J � 1 and k 2 IF2n−j . In what follows we describe a method
for determining the indices of f~sjg using the indices of the signi�cant wavelet
coe�cients fdjg.

The formal description of the procedure is as follows. For the functions
under consideration the magnitude of many wavelet coe�cients fdjg are
below a given threshold of accuracy ε. The representation of f on V0,
(3.41), using only coe�cients above the threshold ε is

(P0f)�(x) =
JX

j=1

X

{k:|dj

k
|>�}

dj
kψj;k(x) +

X

k∈IF
2n−J

sJ
kϕJ;k(x), (4.107)

whereas for the error we have

jj(P0f)�(x)� (P0f)(x)jj2 =

0
B@

JX

j=1

X

{k:|dj

k
|≤�}

jdj
kj2
1
CA

1=2

< εN1=2
r , (4.108)

where Nr is the number of coe�cients below the threshold. The number of
signi�cant wavelet coe�cients is de�ned as Ns = N � Nr, where N is the
dimension of the space V0.

We de�ne the ε-accurate subspace for f , denoted D�
f � V0, as the

subspace spanned by only those basis functions present in (4.107),

D�
f = VJ

[
fspan fψj;k(x)g : jdj

kj > εg, (4.109)

for 1 � j � J and k 2 IF2n−j . Associated with D�
f are subspaces S�

f;j



In this way we can use D�
f to ‘mask’ V0 forming S�

f;j ; in practice all we do

is manipulate indices. The subset of coe�cients f~sjg that contribute to the
sum (4.106) may now be identi�ed by indices of the coe�cients correspond-
ing to basis functions in S�

f;j .

We now show that signi�cant wavelet coe�cients dj+1 and contributions
of Bjsj to (4.102) both originate from the same coe�cients sj. In this way
we can use the indices of dj+1 to identify the coe�cients ~sj that contribute
to the sum (4.106). We begin by expanding f(x+2jl) into its Taylor series,





For example, if u(x) is expanded in its Fourier series, clearly the Fourier
coe�cients of the function f(u) do not correspond to the function of the
Fourier coe�cients. This has led to the development of pseudo-spectral
algorithms for numerically solving partial di�erential equations, see e.g. [23,
24].

In order to explain the algorithm for computing f(u) in the wav



5.1 Adaptive Calculation of u2

Since the product of two functions can be expressed as a di�erence of squares,
it is su�cient to explain an algorithm for evaluating u2. The algorithm we
describe is an improvement over that found in [6, 7].

In order to compute u2 in a wavelet basis, we �rst recall that the projec-
tions of u on subspaces Vj and Wj are given by Pju 2 Vj and Qju 2Wj

for j = 0, 1, 2, . . . , J � n, respectively (see the discussion in Section 3). Let
jf , 1 � jf � J (see, e.g., Figure 10 where jf = 5 and J = 8), be the �nest
scale having signi�cant wavelet coe�cients that contribute to the ε-accurate
approximation of u, i.e. the projection of u can be expressed as

(P0u)�(x) =
JX

j=jf

X

{k:|dj

k
|>�}

dj
kψj;k(x) +

X

k∈IF
2n−J

sJ
kϕJ;k(x). (5.125)

Let us �rst consider the case where u and u2 2 V0, so that we can expand
(P0u)

2 in a ‘telescopic’



(Pju)(Qju) do not necessarily belong to the same subspace as the multipli-
cands. However, since

Vj

M
Wj = Vj−1 � Vj−2 � . . . � Vj−j0 � . . . , (5.129)

we may think of both Pju 2 Vj and Qju 2Wj as elements of a �ner sub-
space, that we denote Vj−j0 , for some j0 � 1. We compute the coe�cients
of Pju and



for m = 1, 2, . . . ,M and arrive at

(�i)−m ∂m



where Pjf(u) is the contribution to f(u) on subspace Vj (see (5.127). On
the �nal coarse scale J , we compute

PJ−j0(u
2) = (Rj

j0
(PJu))

2+2(Rj
j0

(PJu))(Rj
j0

(QJu))+(Rj
j0

(QJu))
2. (5.141)

We then project the representation on subspaces Vj−j0, for j = jf , . . . J into
the wavelet basis. This procedure is completely equivalent to the decompo-
sition one has to perform after applying the NS-form. The algorithm for
computing the projection of u2 in a wavelet basis is illustrated in Figure 10.
In analogy with \pseudo-spectral" schemes, as in e.g. [23, 24], we refer to
this as an adaptive pseudo-wavelet algorithm.

To demonstrate that the algorithm is adaptive, we recall that u has
a sparse representation in the wavelet basis. Thus, evaluating (Qju)

2 for
j = 1, 2,2 in

inmanipultingaony tparse relctor.
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5.2 Remarks on the Adaptive Calculation of General f(u)

This Section consists of a number of observations regarding the evaluation
of functions other than f(u) = u2 in wavelet bases. For analytic f(u) we can
apply the same approach as in Section 5.1, wherein we assume f(P0u) 2 V0

and expand the projection f(P0u) in the ‘telescopic’ series

f(P0u)� f(PJu) =
JX

j=1

f(Pj−1u)� f(Pju). (5.142)

Using Pj−1 = Qj +Pj to decouple scale interactions in (5.142) and assuming
f(�) to be analytic, we substitute the Taylor series

f(Qju+ Pju) =
NX

n=0

f (n)(Pju)

n!
(Qju)

n +Ej;N(f, u), (5.143)

to arrive at

f(P0u) = f(PJu) +
JX

j=1

NX

n=1

f (n)(Pju)

n!
(Qju)

n +Ej;N(f, u). (5.144)

For f(u) = u2, jf = 1 and N = 2 we note that (5.144) and (5.127) are
identical.

This approach can be used for functions f(u) that have rapidly converg-
ing Taylor series expansions, e.g. f(u) = sin(u), for juj su�ciently small. In
this case, for a given accuracy ε we �x an N so that jEj;N (f, u)j < ε. Wfor



In





begin by setting

U0(tj+1) = E(U(tj)) + I(U(tj), U(tj)), (6.151)

and repeatedly evaluate

Uk+1(tj+1) = E(U(tj)) + I(U(tj), Uk(tj+1)), (6.152)

for k = 0, 1, 2 . . .. We terminate the iteration when

kUk+1(tj+1)� Uk(tj+1)k < ε, (6.153)

where

kUk+1(tj+1)� Uk(tj+1)k =

 
2−n

2nX

i=1

(Uk+1(xi, tj+1)� Uk(xi, tj+1))
2

!1=2

.

(6.154)
Once (6.153) is satis�ed, we update the solution and set

U(tj+1) = Uk+1(tj+1). (6.155)

Again we note that one can use a more sophisticated iterative scheme and dif-
ferent stopping criteria for evaluating (6.150) (e.g. simply compute (6.152)
for a �xed number of iterations).

6.1 The Heat Equation

We begin with this simple linear example in order to illustrate several points
and provide a bridge to the nonlinear problems discussed below. In particu-
lar we show that in the wavelet system of coordinates, higher order schemes
do not necessarily require more operations than lower order schemes. We
consider the heat equation on the unit interval,

ut = νuxx, 0 � x � 1, 0 � t � 1, (6.156)

for ν > 0, with the initial condition

u(x, 0) = u0(x), 0 � x � 1, (6.157)

and the periodic boundary condition u(0, t) = u(1, t). There are several
well-known approaches for solving (6.156) and more general equations of
this type having variable coe�cients. Equation (6.156) can be viewed as a
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simple representative of this class of equations and we emphasize that the
following remarks are applicable to the variable coe�cient case, ν = ν(x)
(see also [32]).

For di�usion-type equations, explicit �nite di�erence schemes are con-
ditionally stable with the stability condition ν�t/(�x)2 < 1 (see e.g. [19])
where �t = 1/Nt, �x = 1/N , and Nt is the number of time steps. This con-
dition tends to require prohibitively small time steps. An alternate, implicit
approach is the Crank-Nicolson scheme, [19], which is unconditionally stable
and accurate to O((�t)2 + (�x)2). At each time step, the Crank-Nicolson
scheme requires solving a system of equations,

AU(tj+1) = BU(tj), (6.158)

for j = 0, 1, 2, . . . , Nt � 1, where we have suppressed the dependence of
U(x, t) on x. The matrices A and B are given by A = diag(� �

2 , 1 + α,��
2 )

and B = diag(�
2 , 1� α, �

2 ), where α = ν ∆t
(∆x)2 .

Alternatively, we can write the solution of (6.156) as

u(x, t) = etLu0(x), (6.159)

where L = ν∂xx, and compute (6.159) by discretizing the time interval [0, 1]
into Nt subintervals of length �t = 1/Nt, and by repeatedly applying the
NS-form of the operator e∆tL via

U(tj+1) = e∆tLU(tj), (6.160)

for j = 0, 1, 2, . . . , Nt � 1, where U(t0) = U(0). The numerical method de-
scribed by (6.160) is explicit and unconditionally stable since the eigenvalues
of e∆t@2

x are less than one.
The fact that the Crank-Nicolson scheme is unconditionally stable allows

one to choose �t independently of �x; in particular one can choose �t to
be proportional to �x. In order to emphasize our point we set �x = �t
and ν = 1. Although the Crank-Nicolson scheme is second order accurate
and such choices of the parameters �x, �t, and ν appear to be reasonable,
by analyzing the scheme in the Fourier domain, we �nd that high frequency
components in an initial condition decay very slowly. By diagonalizing ma-
trices A and B in (6.158), it is easy to �nd the largest eigenvalue of A−1B,
λN = 1−2�

1+2� . For the choice of parameters ν = 1 and �t = �x, we see
that as α becomes large, the eigenvalue λN tends to �1. We note that
there are various ad hoc remedies (e.g. smoothing) used in conjunction with
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the Crank-Nicolson scheme to remove these slowly decaying high frequency
components.

For example, let us consider the following initial condition

u
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e�∆t@xx , the adaptive algorithm developed in Section 4.3 and the sparsity of
the solution in the wavelet basis. Finally, we note that if we were to consider
(6.156) with variable coe�cients, e.g.

ut = ν(x)uxx, (6.162)

the exponential operator e∆t�(x)L can be computed in O(N) operations using
the scaling and squaring method outlined in e.g. [9] (see also [12]).
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Figure 13: NS-form representation of the operator A−1B used in the Crank-
Nicolson scheme (6.158). Entries of absolute value greater than 10−8 are
shown in black. The wavelet basis is Daubechies with M = 6 vanishing
moments (Lf = 18), the number of scales is n = 9 and J = 7. We have set
ν = 1.0 and �t = �x = 2−9. Note that the top left portion of the Figure
contains non-zero entries which indicate high frequency components present
in the operator A−1B.

Figure 14: NS-form representation of the operator e�∆tL used in (6.160).
Entries of absolute value greater than 10−8 are shown in black. The wavelet
basis is Daubechies with M = 6 vanishing moments (Lf = 18), the number
of scales is n = 9 and J = sho(91 0 Td
mp4.nd



6.2 Burgers’ Equation

Our next example is the numerical calculation of solutions of Burgers’ equa-
tion

ut + uux = νuxx, 0 � x � 1, t � 0, (6.163)

for ν > 0, together with an initial condition,

u(x, 0) = u0(x), 0 � x � 1, (6.164)

and periodic boundary conditions u(0, t) = u(1, t). Burgers’ equation is the
simplest example of a nonlinear partial di�erential equation incorporating
both linear di�usion and nonlinear advection. Solutions of Burgers’ equation
consist of stationary or moving shocks and capturing such behavior is an
important simple test of a new numerical method, see e.g. [34, 29, 4].

Burgers’ equation may be solved analytically by the Cole-Hopf trans-
formation [27, 17], wherein it is observed that a solution of (6.163) may be
expressed as

u(x, t) = �2ν
φx

φ
, (6.165)

where φ = φ(x, t) is a solution of the heat equation with initial condition

φ(x, 0) = e−
1

4��

R
u(x;0)dx. (6.166)

Remark: We note that if



in an essentially exact way. Thus, we may attribute all numerical artifacts
in the solution to the nonlinear advection term in (6.163).

For each of the following examples, we illustrate the accuracy of our
approach by comparing the approximate solution Uw with the exact solution
Ue using

kUw � Uek =

 
2−n

2n−1X

i=0

(Uw(xi, t)� Ue(xi, t))
2

!1=2

. (6.168)

For comparison purposes, we compute the exact solution Ue via

Ue(x, t) =

R∞
−∞

x−�
t e−G(�;x;t)=2�dη

R∞
−∞ e−G(�;x;t)=2�dη

, (6.169)

where

G(η;x, t) =

Z �

0
F (η′)dη′ +

(x� η)2
2t

, (6.170)

and F (η) = u; u;
U





ν = 0.001, and ε = 10−6, and we refer to Figures 17 and 18. Using n = 10
scales to represent the solution in the wavelet basis is insu�cient to represent
the high frequency components present in the solution. Figure 17 illustrates
the projection of the solution on V0 beyond the poin







6.3 Generalized Burgers’ Equation

In this Section we consider the numerical solution of the generalized Burgers’
equation

ut + u�ux + λu� = νuxx, 0 � x



growth of the solution, depending on the size of the coe�cient ν. We have
increased the di�usion coe�cient to ν = 0.005, and Figure 23 illustrates
the evolution of the projection of the solution and Figure 24 illustrates the
number of signi�cant wavelet coe�cients. We point out that the number of
operations required to update the solution is proportional to the number of
signi�cant coe�cients.

Example 5. As a �nal example, we compute approximations to the
solution of the so-called cubic Burgers’ equation

ut + u2ux = νuxx, 0 � x � 1, t � 0, (6.176)

via

U(ti+1) = e∆t�@2
xU(ti)�

1

2
O@2

x;1

h
U2(ti)∂xU(ti+1) + U2(ti+1)∂xU(ti)

i
,

(6.177)
where O@2

x;1 is given by (2.19). The only di�erence in (6.177), as compared
with the approximation to Burgers’ equations, (6.167), is the presence of
the cubic nonlinearity. We have computed approximations to the solution
using our algorithms with n = 13, J = 6, �t = 0.001, ν = 0.001, and
ε = 10−6. Figures 25 and 26 illustrate the evolution of the solution for a
gaussian initial condition, and Figures 27 and 28 illustrate the evolution of
the solution for a sinusoidal initial condition. The gaussian initial condition
evolves to a moving shock, and the sinusoidal initial condition evolves into
two right-moving shocks. We note that although the number of grid points
in a uniform discretization of such an initial value problem is, in this case,
N = 213, we are using only a few hundred signi�cant wavelet coe�cients to
update the solution.
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7 Conclusions

In this Chapter we have synthesized the elements of



using a wavelet (or multi-wavelet) basis on an interval rather than a peri-
odized wavelet basis. Also, we note that variable coe�cients in
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