














The outline of this Chapter is as follows. In Section 2 we use the semi-
group approach to replace the nonlinear di�erential equation (1.1) by an
integral equation and describe a procedure for approximating the integral
to any order of accuracy. We provide a brief review of wavelet \tools" rele-
vant to our discussion in Section 3. In Section 4 we are concerned with the
construction of and calculations with the operators appearing in the quadra-
ture formulas derived in Section 2. Speci�cally, we describe a method for
constructing the wavelet representation, derive the vanishing-moment prop-
erty, and describe a fast, adaptive algorithm for applying these operators
to functions expanded in a wavelet basis. In Section 5 we introduce a new
adaptive algorithm for computing the pointwise product of functions ex-
panded in a wavelet basis, and discuss the calculation of general nonlinear
functions. In Sections 4 and 5 we give simple numerical examples illustrat-
ing the algorithms. In Section 6 we illustrate the use of these algorithms



In this Chapter we use Equation (2.14) as a starting point for an e�cient
numerical algorithm for solving (1.1). A signi�cant di�culty in designing
numerical algorithms based directly on (2.14) is that the matrices repre-
senting these operators are dense in the ordinary representation. As far as
we know, it is for this reason that the semigroup approach has had limited
use in numerical calculations. We show in Sections 4.1 and 4.2 that in the
wavelet system of coordinates these operators are sparse (for a �xed but
arbitrary accuracy) and have properties that allow us to develop fast, adap-
tive numerical algorithms. Discrete evolution schemes for (2.14) were used
in [11], and further investigated in [12].

The starting point for our discrete evolution scheme is (2.14) where we
consider the function u(x, t)



















where K(x, y) is the kernel of the operator T . The operators in (3.47) are
organized as blocks of a matrix as shown in Figure 3.3.

In [8] it is observed that if the operator T is





3A

A
2

































For example, if u(x) is expanded in its Fourier series, clearly the Fourier
coe�cients of the function f(u) do not correspond to the function of the
Fourier coe�cients. This has led to the development of pseudo-spectral
algorithms for numerically solving partial di�erential equations, see e.g. [23,
24].

In order to explain the algorithm for computing f(u
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the Crank-Nicolson scheme to remove these slowly decaying high frequency
components.

For example, let us consider the following initial condition

u

atmp us

the

slo

deca

comp onen

the

initial

ve theor the

deca

the

er the initial er to the thev oseme

the

Crank-Nicolson sche,al themme

the

or themmeer

to the

atmper

high
comp onen

to highoseme tous thehighmmeer or
coTj
/R67ψ,2ψ0ψTd2tononf
(mme)Tj4-1748.5.3818ψ0ψT9b46omp onen the us onenmme to

er hemeonen nn

conng tommeCrank-Nicomatrix8ψ0ψT5tinloCrank-Nico472ψ0ψTd(conTj.549155ψ0ψTTd9.or)Tj
14.0347854ψ0ψTTd�oloheme tovfr Crank-Ni8f4j4-1.5metho4ψ0ψTd
51Tj6ψ726872ψ655ψ55ψ7n he,872ψ0ψTdplausmme Crank-9ψTd
(consider371963ψ0ψTd
(frequesen)s)Tj6ψ72oj
660)omme

or C.dx753al685ψTdandon.97011ψ23mmevhighfrtLetghmTd1ψ0ψT5.5.ψTd�onhighusor

Cran

mme















ν = 0.001, and ε = 10−6, and we refer to Figures 17 and 18. Using n = 10
scales to represent the solution in the wavelet
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