f_{rom} the _magnetic layer $\epsilon = -t_L$. The length *tR* is an effeci e di ance $\ddot{\text{e}}$ hich he c Neq is a Re maintain a i $\frac{d}{dt}$ act is and \mathbb{R} . The magnetic layer is assumed. have infinite extent in the directions. When we refer the regi a a $\frac{1}{4}$ the nanocontact, e-mean the positive n egative diection along the alist

We calculate the statistical terms of \mathbb{R} and \mathbb{R} flow the total flow the to In gh a fell ragnet ing he are method de cibed in Ref. [4.](#page-7-0) We c a ide, the behavior of the subseteed $\frac{1}{2}$ the spin and the spin and $\frac{1}{2}$ the non-nagmetin response to a non-non-nagmetization in $r_{\rm m}$ magnetization $\vec{M} = M \vec{r}$ $\vec{M} = M \vec{r}$ $\vec{M} = M \vec{r}$, here *M* i he a saturation magnetization. As

$$
\vec{J} \quad ', \quad ' = \frac{I}{2\pi D} \quad _* \quad 'H \quad ' \quad t \quad t \quad t \quad t \quad t \quad P \quad - \quad '
$$
\n
$$
-H \quad -t \quad - \quad 'H \quad ' + t \quad t \quad P
$$
\n
$$
- \frac{I}{\pi} \quad _*^2 H \quad 'H
$$

in- a e angle $\psi_0 = 90$. The top anel de ic_t the a pail a ia \mathbb{W}_a f a a ector i_{nc}, and heles and h the ending dentity for each state. The ending θ density E , ϕ i calculated by taking the time a same of the same areas iF3.01 deTBT9.978001009.978001226.714T607a i01226.7184TjETBT9.978001009.97800110191.8 diing fe enc

This a aliaeá

$$
y = \frac{1}{\tau}, \quad \tau^* = \frac{1}{\pi} \int_{0}^{2\pi} \frac{1}{\tau^*} y \phi', \quad t \in \mathcal{A}
$$

A2

hich e e a he lienation f he longi dinal in ac $c_{\text{int}}^{\text{W}}$ la Psi_{m} The total spin accumulation is

$$
f^* = f^* + 0 + t \ , \quad f^* = f^* - f^* \ , \quad A3
$$

here the longitudinal in acc_{um}ulation is the sum of the c^{∇} ₄ ib' i a fi^t</sup> r each in \acute{e} face $=0$ and $\dot{=}t$. $F \left\{ \begin{array}{ll} \text{R} & \text{R} \\ \text{R} & \text{R} \end{array} \right.$ and θ_* and θ_* in θ_* ,cos θ_* , the dispersion θ_* is θ_* ,cos θ_* , the dispersion of θ_* $\text{relaj af} \setminus \text{change}$ in a e in a hin hl_{rf} is

$$
\omega^{2} = \eta^{2} + \lambda_{*} c \quad \theta = \theta_{*} - c \quad \theta
$$

$$
\times \eta^{2} + \lambda_{*} c \quad \theta = \theta_{*} - c \quad 2\theta \quad , \qquad A4
$$

here θ i here ilibii magnetization la angle at $f^{\mathbf{N}}$ _d $f^{\mathbf{N}}$ _d \mathbf{A} \mathbf{B} = θ , θ = θ , θ = θ , θ = θ .

We biel dic he n_{um}e ical _method e have ed ± 1 e E . [2](#page-1-0) . The late coordinate servival a jie late efficient and acclae choice flat nanocontact in lations. The didentical in e^+e^- is non-ultimative in radius $\lim_{n\to\infty}$, and α , β , β id and uniform in angle:

$$
= 1/2 - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2}
$$

+ $\frac{1}{2}$ - $\frac{1}{2}$ + $\frac{1}{2}$ $\frac{1}{2}$

$$
\vec{r}_{\perp} = \frac{2\pi}{0} \frac{1}{0} \frac{a}{0} \frac{R \vec{r}_{\perp}^2 - a \, 1 + R \vec{r}_{\perp} R / \vec{r}_{\perp}^2}{R} \,, \quad \vec{r}_{\perp} \, \vec{r}_{\perp} \, ,
$$

$$
+ a 4 E^{-2} \vec{r}_{\perp} + \frac{a}{r} \frac{2\pi}{0} \frac{1}{0} \ln{R} \,, \quad \vec{r}_{\perp} \, ,
$$

$$
\overrightarrow{p}_{\perp}^{\prime} \overrightarrow{
$$

hete $4E^{-2} = \frac{2\pi}{0} \frac{1}{0}$ / $\sqrt{2}$ / ϕ' and E i the c_{-n'} let efficit the efficiency of the exact kind.