- 8. [2360/043022 (20 pts)] Consider the linear system of differential equations given by $\mathbf{x}^{\theta} = \mathbf{A}\mathbf{x}^{\theta}$ where $\mathbf{A} = \begin{bmatrix} a & 1 & 1 \\ a & 2 & 1 \end{bmatrix}$ (a is a real number) and with equilibrium solution $\mathbf{x}^{\theta} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.
 - (a) Is $^{\mbox{\tt \#}}$ the only possible equilibrium solution? Justify your answer.
 - (b) For what value(s) of a, if any, will the equilibrium solution $\frac{4}{5}$ be a saddle?
 - (c) For what value(s) of a, if any, will the equilibrium solution $^{\clubsuit}$ be unstable?
 - (d) For what value(s) of a, if any, will the equilibrium solution $^{\#}$