Answer the following problems and simplify your answers.

1. (18pts) Find the explicit solution to the following initial value problem:

$$
\frac{d^{2}z}{dt} e^{t+z} = 0
$$

:. z(0) = ln 2

Solution: Using separation of variables, we have

Z $e^{z} dz = e^{t} dt = e^{t} + C$:

Solving for z yields

 $z = \ln(C \quad e^t)$; $C = C$;

Applying initial conditions, we have

$$
\ln 2 = \ln(C \quad 1) = 0 \quad C = \frac{3}{2}
$$

Then, putting everything together, we have

- 2. (18 pts) Conisder the curve $y = \frac{x^3}{4}$ $\frac{x^3}{6} + \frac{1}{2}$ $\frac{1}{2x}$ on the interval $\frac{1}{2}$ $x - 1$.
	- (a) Find the area of the surface obtained by rotating the curve about the y -axis.
	- (b) Set up, but do not evaluate, the integral with respect to x to nd the area of the surface rotated about $y = 2$.

Solution:

(a) First, we compute

$$
y^{\beta}=\frac{x^2}{2}-\frac{1}{2x^2}.
$$

Next, we can compute our length element as

 \subset

$$
ds = \frac{p}{1 + (y^0)^2} dx = \frac{1 + \frac{x^2}{2} - \frac{1}{2x^2}}{1 + \frac{x^2}{2} - \frac{1}{2x^2}} dx
$$

$$
= \frac{1 + \frac{x^2}{2} - \frac{1}{2} + \frac{1}{2x^2}}{\frac{x^2}{2} - \frac{1}{2} + \frac{1}{2} + \frac{1}{2x^2}} dx
$$

$$
= \frac{x^2}{2} + \frac{1}{2x^2} dx
$$

$$
= \frac{x^2}{2} + \frac{1}{2x^2} dx
$$

Since we are rotating the curvecu897 377..032.87..032.87..032.87..032.87..032.87..032.87f 64ce

- 3. (40 pts) Consider the region R bounded by $y = \frac{1}{2}$ $\frac{1}{2}x^2$ and $y = \frac{p}{x}$ 2x.
	- (a) Sketch and shade R

respectively. Plugging these values in the washer method formula gives our volume as

$$
V = \begin{bmatrix} 2 & 2 & 2 \\ 0 & (R^2 & r^2) dx = \begin{bmatrix} 2 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix} & \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} & \begin{bmatrix} 2
$$

iii. The base length of each rectangle is given by the vertical distance in R . In this case, the base

$$
b = \frac{D_{\overline{2X}}}{2} \cdot \frac{x^2}{2}
$$

Then, the height of the region is $h = 3b$ meaning the area of each rectangle is

$$
A(x) = b
$$
 $h = 3$ $\frac{b^2}{2x}$ $\frac{x^2}{2}$ $\frac{2}{x}$

4. (24 pts) Determine whether or not the following sequences converge or diverge. Justify your answer! If the sequence converges, nd its limit.

(a)
$$
\frac{(1)^{n+1}n}{n^{3-2} + \frac{n}{n}}
$$
 (b) $\ln(2n^2 + 1)$ $2\ln(n + 1)$ (c) $1 + 4^n 3^{2n}$

Solution:

(a) First, we compute

$$
\lim_{n \to \infty} \frac{(-1)^{n+1}n}{n^{3-2} + \frac{n}{n}} = \lim_{n \to \infty} \frac{n}{n^{3-2} + \frac{n}{n}} = \lim_{n \to \infty} \frac{1}{1 + 1 = n} = \frac{0}{1 + 0} = 0
$$

Since the absolute value of the sequence converges to zero,

$$
\lim_{n! \to \infty} \frac{(1)^{n+1}n}{n^{3-2} + 1} = 0.
$$

Finally, since the limit exists and is nite, the sequence $\sqrt{converges:}$

(b) Using log rules and continuity, we can compute our limit as

$$
\lim_{n \to \infty} (\ln(2n^2 + 1) - 2\ln(n + 1)) = \lim_{n \to \infty} \ln \frac{2n^2 + 1}{(n + 1)^2} = \ln \lim_{n \to \infty} \frac{2 + 1 = n^2}{(1 + 1 = n)^2} = \boxed{\ln 2}
$$

Since the limit exists and is nite, the sequence $\sqrt{converges}$.

(c) A little algebra yields

$$
1 + 4^{n} \quad 3^{2} \quad n = 1 + 3^{2} \frac{4^{n}}{3^{n}} = 1 + 9 \quad \frac{4}{3} \quad n
$$

The last term in our sequence is geometric with $r = 4=3$. Since $4=3 > 1$,

$$
\frac{4}{3} \begin{array}{c} n \\ l \end{array} \quad 1 \quad \text{as } n \neq 1
$$

meaning the original sequence $diverges$ to in nity.