

- 1. (28 points) The following problems are not related.
 - (a) (10 points) Evaluate the definite integral $z^{-2} \cos(x) = \frac{1}{1 + 2\sin(x)} dx$. (b) (10 points) Evaluate the definite integral $z^{0} \cos(x) = \frac{1}{1 + 2\sin(x)} dx$.

 - (c) (8 points) Suppose that $f(x) = \int_{2}^{Z} \frac{t^2 + 2}{t 1} dt$. Find $f^{\emptyset}(4)$.
- 2. (24 points) The following problems are not related.
 - (a) (10 points) Approximate the area of the region bounded by the function $f(x) = 2\cos(x) + 2$ and the x-axis on the interval [=2;3 =2] by using four approximating rectangles; take the sample points to be the right endpoints.
 - (b) (14 points) Evaluate the limit $\lim_{n \to \infty} \frac{x^n}{n} = \frac{1}{n} \frac{i^3}{n^3} + \frac{2i}{n}$ using summation formulas, or by evaluating an appropriate definite integral.
- 3. (16 points) The following problems are not related.
 - (a) (6 points) Suppose we want to approximate a solution to the equation $3x + 2 \cos(x) = 0$ using Newton's Method. What would the formula for x_{n+1} be? (To get full points for this question, you must provide the explicit formula for x_{n+1} in terms of x_n ; the generic formula for Newton's Method is <u>not</u> sufficient.)
 - (b) (10 points) Suppose the acceleration of an object (in m=s²) at any time t is given by $a(t) = 6t^2$ 4. Find the velocity v(t) of the object at any time t, if v(1) = 2 m=s.
- 4. (18 points) A farmer wants to fence off a small field in the shape of a right triangle. The hypotenuse of the triangle is along a riverbank, and the farmer will not need fencing there. If the farmer wants the area of the field to be 50 m², what is the minimum amount of fencing they will need? Justify your answer with calculus techniques, and include appropriate units with your answer.

5. (8 points) Write the expression $\int_{1}^{Z} f(x) dx + \int_{1}^{Z} f(x) dx + \int_{3}^{Z} f(x) dx$ as a single integral of the form f(x) dx.

6. (6 points) Suppose the velocity v(t) of a particle is given in the graph below:

