APPM 1345	Exam 3	Spring 2024
APPM 1345		
Exam 3	Name	
Spring 2024	Instructor Richard McNamara	Section 150
-p····j= ·		

- 1. (23 pts) Parts (a) and (b) are unrelated.
 - (a) Find the inverse function of $f(x) = \frac{\ln(2x)}{1 + \ln(2x)}$ for $x = \frac{1}{2}$.

Express your answer in the form $f^{-1}(x)$. (You do not have to identify the inverse function's domain.)

Solution:

$$y = \frac{\ln(2x)}{1 + \ln(2x)}$$
$$y[1 + \ln(2x)] = \ln(2x)$$
$$y + y \ln(2x) = \ln(2x)$$
$$(y - 1) \ln(2x) = -y$$
$$\ln(2x) = \frac{y}{1 - y}$$
$$2x = e^{y = (1 - y)}$$
$$x = \frac{1}{2} e^{y = (1 - y)}$$
Reverse the roles of x and y to get
$$y = f^{-1}(x) = \frac{1}{2} e^{x = (1 - x)}$$

- (b) Consider the function $g(x) = 2x \cos x$.
 - i. Explain why g is invertible, based on its derivative.
 - ii. Find an equation of the line that is tangent to the curve $y = g^{-1}(x)$ at the point (4 1/2). *Hint:* Do not attempt to identify the function $g^{-1}(x)$.

Solution:

- i. $g^{\ell}(x) = 2 + \sin x$, which is positive for all real numbers x since 1 sin x 1. Therefore, g(x) is a monotone increasing function, which implies that it is invertible.
- ii. The slope of the line that is tangent to the curve $y = g^{-1}(x)$ at the point (4 1/2) is $(g^{-1})^{\ell}(4 1)$.

Since
$$(g^{-1})^{\ell}(x) = \frac{1}{g^{\ell}(g^{-1}(x))}$$
, we know that $(g^{-1})^{\ell}(4 - 1) = \frac{1}{g^{\ell}(g^{-1}(4 - 1))}$.

Since the curve $y = g^{-1}(x)$ passes through the point (4 - 1; 2), we know that $g^{-1}(4 - 1) = 2$.

It follows that $(g^{-1})^{\ell}(4 - 1) = \frac{1}{g^{\ell}(2)}$.

The expression for $g^{\ell}(x)$ from part (i) implies that $g^{\ell}(2) = 2 + \sin(2) = 2$. Therefore,

$$(g^{-1})^{\ell}(4 - 1) = \frac{1}{g^{\ell}(2)} = \frac{1}{2}.$$

Since the tangent line passes through the point (4 - 1/2) its equation is

$$y \quad 2 = \frac{1}{2}(x \quad (4 \quad 1))$$

2. (25 pts) Parts (a) and (b) are unrelated.

(a)

- (b) Consider the function $p(t) = p_0 e^{kt}$, which represents an exponential growth model for a population, where the constant p_0 represents the initial population size and the constant k represents the population's relative growth rate. Suppose p(10) = 2 and p(50) = 6.
 - i. Find the value of *k*.
 - ii. Find the value of p_0 .

Solution:

The two given data points lead to the following system of two equations and two unknowns:

$$(t; p) = (10;$$

3. (26 pts) Evaluate the following derivatives using properties of logarithms and/or logarithmic differentiation. Do **not** fully simplify your answers, although they must be expressed as functions of *x*.

(a)
$$\frac{d}{dx}$$
 In $\frac{(10 \cos^2 x)}{e^{x \sin x}} \frac{p_{x^4 + 6}}{e^{x \sin x}}$ #

Solution:

$$\frac{d}{dx} \ln \frac{(10 \cos^2 x)^p x^4 + 6}{e^{x \sin x}} = \frac{d}{dx} \ln (10 \cos^2 x) + \ln^h (x^4 + 6)^{1-2} \ln e^{x \sin x}$$
$$= \frac{d}{dx} \ln (10 \cos^2 x) + \frac{1}{2} \ln(x^4 + 6) x \sin x$$
$$= \frac{(2\cos x)(\sin x)}{10 \cos^2 x} + \frac{1}{2} \frac{4x^3}{x^4 + 6} (x\cos x + \sin x)$$
$$= \frac{2\cos x \sin x}{10 \cos^2 x} + \frac{2x^3}{x^4 + 6} x \cos x \sin x$$

(b)
$$\frac{d}{dx} e^x + e^{-x}$$

Solution:

Let $y = (e^x + e^x)^x$.

$$\ln y = \ln e^{x} + e^{x}$$
$$= x \ln e^{x} + e^{x}$$

$$\frac{d}{dx}[\ln y] = \frac{d}{dx} \quad x \ln e^{x} + e^{-x}$$

$$\frac{1}{y} \quad \frac{dy}{dx} = x \quad \frac{e^{x}}{e^{x} + e^{-x}} + \ln e^{x} + e^{-x}$$

$$\frac{dy}{dx} = y \quad x \quad \frac{e^{x}}{e^{x} + e^{-x}} + \ln e^{x} + e^{-x}$$

$$\frac{dy}{dx} = \boxed{e^{x} + e^{-x} \quad x \quad \frac{e^{x}}{e^{x} + e^{-x}} + \ln e^{x} + e^{-x}}$$

4. (26 pts) Evaluate the following integrals.

(a)
$$\int_{1}^{Z_{2}} \frac{2^{x}}{9 - 2^{x}} dx$$

Solution:

Let u = 9 2^{x} , which implies that $du = 2^{x} \ln 2 dx$.

$$x = 1$$
) $u = 9$ $2^{1} = 7$
 $x = 2$) $u = 9$ $2^{2} = 5$

$$\frac{Z_{2}}{1} \frac{2^{x}}{9 \frac{2^{x}}{2^{x}}} dx = \frac{1}{\ln 2} \frac{Z_{5}}{7} \frac{du}{u} = \frac{1}{\ln 2} \frac{Z_{7}}{5} \frac{du}{u} = \boxed{\frac{\ln 7 \ln 5}{\ln 2}}$$

(b)
$$\frac{Z}{x-1} \frac{x}{dx}$$

Solution:

Let u = x 1, which implies that du = dx and x = u + 1.

$$Z = \frac{x}{x + 1} dx = \frac{Z}{u + 1} du = \frac{Z}{u + 1} du = \frac{Z}{u + 1} du = \frac{Z}{u + 1} \frac{du}{u} = u + \ln juj + C = x + \ln jx + \ln jx + C$$

Your Initials _____

ADDITIONAL BLANK SPACE If you write a solution here, please clearly indicate the problem number.