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and references therein) but the technique limits the results to a few partic-
ular orders and degrees. An attempt to construct grids invariant under the
icosahedral group may be found in [23, 22] (with some negative weights in
the early construction). We also refer to [7, 42] for a review and further
references.

In this paper we develop a systematic numerical approach for construct-
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As a replacement for spherical harmonics, such “cubed spher
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computed and some implementations of the DVR method [17] use quadra-
tures developed by Lebedev [26, 27]. Our quadratures should extend such
methods by allowing effectively an arbitrary order and degree.

We start by reviewing necessary mathematics, outline a general method
for constructing nodes invariant under the icosahedral group and illustrate
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the case since any missing invariant functions would have been discovered
during a posteriori verification of quadratures.
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to position the generators onto the sphere, we first map the po
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