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We construct high-order derivative operators for smooth functions represented via 
discontinuous multiwavelet bases. The need for such operators arises in order to avoid 
artifacts when computing functionals involving high-order derivatives of solutions of 
integral equations. Previously high-order derivatives had to be formed by repeated 
application of a first-derivative operator that, while uniquely defined, has a spectral 
norm that grows quadratically with polynomial order and, hence, greatly amplifies 
numerical noise (truncation error) in the multiwavelet computation. The new constructions 
proceed via least-squares projection onto smooth bases and provide substantially improved 
numerical properties as well as permitting direct construction of high-order derivatives. 
We employ either b-splines or bandlimited exponentials as the intermediate smooth basis, 
with the former maintaining the concept of approximation order while the latter preserves 
the pure imaginary spectrum of the first-derivative operator and provides more direct 
control over the bandlimit and accuracy of computation. We demonstrate the properties 
of these new operators via several numerical tests as well as application to a problem in 
nuclear physics.
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generalizing the Haar basis [17], multiwavelets kept the “unpleasant” feature that some basis functions are discontinuous. 
Counter-intuitively, as noted in [3], this feature may be considered “a blessing in disguise”. In particular, the fact that the 
scaling functions are supported on non-overlapping intervals allows high-order schemes on bounded intervals and, also, it 
is relatively easy to perform nonlinear operations. From an algorithmic point of view, it is also relatively easy to maintain a 
sparse representation of functions in higher dimensions when compared with required bookkeeping for overlapping bases. 
The observation that discontinuous basis functions allow high-order schemes is not unique to multiresolution bases as the 
same has been observed in, e.g., the discontinuous Galerkin methods. Consequently, since representations in multiwavelet 
bases have many useful properties and result in algorithms well suited for modern computer processors, they became a 
successful practical tool for high performance computing and are used in quantum chemistry [18,20,45,46] and nuclear 
physics [34,14,31,32], and serve as mathematical underpinnings of MADNESS [21].

Yet, the fact that basis functions are allowed to be discontinuous leads to a number of problems. As discussed in [3], 
the only scale-consistent derivative operator available to us is the first derivative. Operators for the second and higher 
derivatives do not exist due to the discontinuous nature of the basis and are applied as a power of the first derivative. 
Naively, if the function has high-order derivatives, such an approach appears reasonable. However, due to the approximate 
nature of representation in 
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make computations with functionals that incorporate derivatives more expensive compared to those that do not include 
derivatives. This is largely due to the need to compute much more accurately (i.e., oversample) in order to obtain accurate 
derivatives and function tails.

Another issue arising from the norm of the original derivative operator and the need to compute higher derivatives by its 
repeated application is that differential operators and their pseudo-inverse (i.e., convolution with the corresponding Green’s 
function) do not numerically commute within the precision of computation — i.e., the order of operations matters and there 
is a lack of consistency between the numerical and formal calculus. This has emerged as a significant issue for scientists 
making first use of MADNESS, which typically requires reform
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other across all scales. Together, these relations enable the transformation between different scales of the multiresolution 
analysis. Note that at their mid-point the multiwavelets (4) are either discontinuous or have a discontinuous derivative.

The projection of a function f (x) into the order-k scaling function basis at level n is

f n(x) =
2n−1∑
l=0

k−1∑
j=0

sn
jlφ

n
jl(x), (5)

where s are the scaling function coefficients. Assuming f is k-times differentiable, the approximation error is [1]

∥∥ f − f n
∥∥ ≤ 2−nk 2

4kk! sup
x∈[0,1]

∣∣∣∣∣ dk

dxk
f (x)

∣∣∣∣∣ . (6)

Repeated application of the filters H (0) , H (1) , G(0) and G(1) (i.e., the fast wavelet
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The construction preserves the 3-box stencil and scale-invariant operator, and hence can be used as a drop-in replacement 
in existing software (e.g., MADNESS [21], MRChem [25]).

We now explain our construction in a general setting that combines the projection and differentiation operators. Let 
us assume that we have two bases, the original basis u1 (x) , u2 (x) , . . . un (x) and an auxiliary basis v1 (x) , v2 (x) , . . . vm (x), 
where m ≤ n and the latter basis spans a subspace of the former (exactly or approximately within a given accuracy). 
Specifically, we are interested in the case where the basis functions v1, v2, . . . vm all have derivatives of order p whereas 
not all of the functions u1 (x) , u2 (x) , . . . un (x) are p-differentiable. As we already pointed out, our main example is the 
basis where u1 (x) , u2 (x) , . . . un (x) are piece-wise polynomials.

We assume that the function f has the derivative of order p that we want to evaluate but is written in the original 
basis,

f (x) =
n∑

k=1

fkuk (x) + O (ε), (8)

where ε is the accuracy of computation. Note that if the coefficients fk are known exactly then the error would be entirely 
in the wavelet spaces at the current and finer scales, but in practice the coefficients would only be known approximately.

Let us start by defining the n × m matrix A with entries

αil =
∫

ui(x)vl(x)dx, (9)

and, if the original basis is not orthonormal, also the n × n Gram matrix G with entries

Gik =
∫

ui (x) uk (x)dx, i,k = 1, . . .n.

Our first step is to project f on the subspace spanned by functions v1 (x) , v2 (x) , . . . vm (x) reproducing in a least squares 
sense the projection onto the original basis. We seek the coefficients gl so that

n∑
k=1

fkuk (x) ≈

m∑
l=1

gl vl(x). (10)

Denoting f = ( f1, f2, . . . fn), g = (g1, g2, . . . gm) and projecting from the left with ui (x), we seek g such that

A∗Gf = A∗Ag.

Thus, we obtain coefficients of f in the auxiliary basis as

g = (
A∗A

)−1 A∗Gf

and =x28 Tm
00 1 Tf
8.4483 0 0 8.4483 148.086 452.70680.2(

l
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D(p) = G−1B(p)
(
A∗A

)−1 A∗G.

If the original basis u1, u2, . . . un is orthonormal, then G is the identity matrix and we have

D(p) = B(p)
(
A∗A

)−1 A∗. (11)

In our case the first basis consists of the 
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where c (bandlimit) is a fixed parameter (see [5,6]). We seek (an approximate) basis for this space. While PSWFs can serve 
this purpose, it is more convenient in our case to use a fixed set of exponentials 

{
eicθkx

}M
k=1 as described in the sequel.

The use of band-limited functions on an interval for integration and interpolation relies on quadratures constructed 
in [44,5,33].1 These Gaussian-type quadratures for bandlimited exponentials differ from the classical Gaussian quadratures 
for polynomials in that they are approximate. Indeed, with a finite number of nodes it is impossible to integrate exactly an 
infinite number of functions but, it turns out, that all functions Ec can be integrated within any finite user-selected accuracy 
ε . The generalized Gaussian quadratures for exponentials to integrate functions in Ec with accuracy ε are summarized as
(see [5,33,6])

Lemma. For c > 0 and any ε > 0, there exist a finite number of nodes −1 < θ1 < θ2 < · · · < θM < 1 and corresponding weights 
wk > 0, such that for any x ∈ [−1, 1],∣∣∣∣∣∣

1∫
−1

eictx dt −
M∑

k=1

wkeicθkx

∣∣∣∣∣∣ < ε, (12)

where the number of nodes, M = c/π + O  (log c), is (nearly) optimal. The nodes and weights maintain the natural symmetry, θk =
−θM−k+1 and wk = wM−k+1 .

We note that the construction of quadratures in [5,33] is more general than formulated here and yields quadratures for 
band-limited exponentials integrated with a weight function.

We now describe interpolation in Ec . Given a finite accuracy ε , we seek to represent functions in Ec by a fixed set of 
exponentials 

{
eicθkx

}M
k=1, where M is as small as possible. It turns out (see [5]) that by finding quadrature nodes {θk} M

k=1 and 
weights {wk} M

k=1 for exponentials with bandlimit 2c and accuracy ε2, 9.4253 460.95 Tm
0 Tc
( )Tj
/F1 1 4Tm
0 Tc
( )Tj
/F1 1 Tf
7.Tm
0 Tm0
/F3 1 Tf
9.9626 0 0 9.9626 314.9592Tm
(7408 Tm
0 Tc
( )Tj
/F1 1 Tf
7.9701 0 0 7.9701 264.7331 4391408 Tm
0 Tc
(Tc
(in)Tj
/F3 1 Tf
9.9626 0 0 9.9626 432.9032 460308 Tm
0 Tc
( )Tj
/F1 1 Tf
7.9701 0 0 7.9701 176.3417 40.95 
/F1 1 Tf
7.Tm[(r)12.4fad)]T3/F1)]TJ
/F3 1 Tf
9.9626 0 0 9.9626 384.3105453..308 Tm
-.0003 



8 J. Anderson et al. / Journal of Computational Physics: X 4 (2019) 100033

e n o t e u n i o n u n i o n  

denote
Fig. 1. Density plot of three blocks of the derivative matrix for k = 16 with a resulting accuracy of approximately 10−7.

[−1, −1/3], [−1/3, 1/3] and [1/3, 1] with accuracy ε , where ε is the accuracy of representing exponentials in Ec via the 
basis functions.

Given a bandlimited (or approximately bandlimited) function in Ec ,

f (x) =
M∑

m=1

gmeicθmx, (13)

we denote the vector of its coefficients as g = {gm}M
m=1. Using matrix A, we obtain the coefficients of this function in the 

Legendre basis on the uniond
denote 
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